导航:首页 > 源码编译 > k均值算法程序python实现

k均值算法程序python实现

发布时间:2022-07-25 03:57:46

❶ kmeans算法python怎么实现

函数

loadDataSet(fileName)
从文件中读取数据集
distEclud(vecA, vecB)
计算距离,这里用的是欧氏距离,当然其他合理的距离都是可以的
randCent(dataSet, k)
随机生成初始的质心,这里是虽具选取数据范围内的点
kMeans(dataSet, k, distMeas=distEclud, createCent=randCent)
kmeans算法,输入数据和k值。后面两个事可选的距离计算方式和初始质心的选择方式
show(dataSet, k, centroids, clusterAssment)
可视化结果

❷ 如何利用python来实现k-means聚类,研究实例,提供txt或者excel例子

优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢
使用数据类型:数值型数据

❸ 如何在python中实现k-mean++算法

这东西太简单了埃不过你要有些算法基矗如果实在是没有,就拿现成的手写识别算法。界面这东西,基本上刚刚入门的GUI设计都会有画图这样的例子,拿过来略略改一下就要可以用。没有调查过。如果我去设计会考虑1.笔画,2.拐点,3.曲度4.分段长度

❹ kmeans算法用Python怎么实现

K-means算法是集简单和经典于一身的基于距离的聚类算法

采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。

该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

核心思想

通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。

k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

k-means算法的基础是最小误差平方和准则,


各类簇内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。

上式的代价函数无法用解析的方法最小化,只能有迭代的方法。

❺ kmeans算法用Python怎么实现

第一种: 引用scikit-learn包

fromsklearn.clusterimportKMeans

k=10#Kmeans的k值
model=Kmeans(n_clusters=k)
X=[[1,2],[1,3],[2,1],....]#改成你的数据
model.fit(X)
#然后就训练好了,可以查看model的属性
model.cluster_centers
model.labels_

第二种: 自己写代码实现

importnumpyasnp
importrandom
data=[[1,1,1],[1,1,3],[1,2,1],[5,1,1],[5,1,2],[5,2,1],[5,5,5],[5,5,4],[5,4,4]]
data=np.array(data)

k=4#kmeans的k
n_iteration=500#最大迭代次数


#求初始化的k个质心(这k个质心必须包含在k个点的凸空间内)
center=np.matrix(np.zeros((k,len(data[0]))))
center_after=np.matrix(np.zeros((k,len(data[0]))))
foriinrange(len(data[0])):
center[:,i]=min(data[:,i])+(max(data[:,i])-min(data[:,i]))*np.random.rand(k,1)


defcalc_distance(x,y,distance='eucidean'):
x,y=np.array(x),np.array(y)
ifdistance=='eucidean':
returnnp.sqrt(np.sum((y-x)**2))


n=0
while1:
n+=1
print('第%s次迭代'%n)
#计算所有点到每个质心的距离,将每个点分到距离最近的那个点那一类
#9个点里哪个质心最近,就分到第几个类
label=np.argmin(np.array([calc_distance(x,y)forxindataforyincenter]).reshape(len(data),k),axis=1)
print(label)
#重新计算质心
foriinrange(k):
center_after[i]=np.mean(np.array([data[j]forjinrange(len(data))iflabel[j]==i]),axis=0)
ifnp.sum(np.abs(center_after-center))<0.01:
#print(np.sum(np.abs(center_after-center)))
print('相邻两次迭代改变甚小,迭代结束')
break
ifn>n_iteration:
print('迭代次数已达上限,迭代结束')
break
center=center_after

❻ kmeans算法用Python怎么实现

from numpy import *
import numpy as np

def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))

def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(array(dataSet)[:,j]) - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]

❼ kmeans算法用Python怎么实现

1、从Kmeans说起
Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了。下面说一下如何在matlab中使用kmeans算法。
创建7个二维的数据点:

复制代码代码如下:
x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];

使用kmeans函数:

复制代码代码如下:
class = kmeans(x, 2);

x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇。 class将是一个具有70个元素的列向量,这些元素依次对应70个数据点,元素值代表着其对应的数据点所处的分类号。某次运行后,class的值是:

复制代码代码如下:

2
2
2
1
1
1
1

这说明x的前三个数据点属于簇2,而后四个数据点属于簇1。 kmeans函数也可以像下面这样使用:

复制代码代码如下:

>> [class, C, sumd, D] = kmeans(x, 2)

class =
2
2
2
1
1
1
1
C =
4.0629 4.0845
-0.1341 0.1201
sumd =
1.2017
0.2939
D =
34.3727 0.0184
29.5644 0.1858
36.3511 0.0898
0.1247 37.4801
0.7537 24.0659
0.1979 36.7666
0.1256 36.2149

class依旧代表着每个数据点的分类;C包含最终的中心点,一行代表一个中心点;sumd代表着每个中心点与所属簇内各个数据点的距离之和;D的每一行也对应一个数据点,行中的数值依次是该数据点与各个中心点之间的距离,Kmeans默认使用的距离是欧几里得距离(参考资料[3])的平方值。kmeans函数使用的距离,也可以是曼哈顿距离(L1-距离),以及其他类型的距离,可以通过添加参数指定。
kmeans有几个缺点(这在很多资料上都有说明):
1、最终簇的类别数目(即中心点或者说种子点的数目)k并不一定能事先知道,所以如何选一个合适的k的值是一个问题。
2、最开始的种子点的选择的好坏会影响到聚类结果。
3、对噪声和离群点敏感。
4、等等。
2、kmeans++算法的基本思路
kmeans++算法的主要工作体现在种子点的选择上,基本原则是使得各个种子点之间的距离尽可能的大,但是又得排除噪声的影响。 以下为基本思路:
1、从输入的数据点集合(要求有k个聚类)中随机选择一个点作为第一个聚类中心
2、对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
3、选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
4、重复2和3直到k个聚类中心被选出来
5、利用这k个初始的聚类中心来运行标准的k-means算法
假定数据点集合X有n个数据点,依次用X(1)、X(2)、……、X(n)表示,那么,在第2步中依次计算每个数据点与最近的种子点(聚类中心)的距离,依次得到D(1)、D(2)、……、D(n)构成的集合D。在D中,为了避免噪声,不能直接选取值最大的元素,应该选择值较大的元素,然后将其对应的数据点作为种子点。
如何选择值较大的元素呢,下面是一种思路(暂未找到最初的来源,在资料[2]等地方均有提及,笔者换了一种让自己更好理解的说法): 把集合D中的每个元素D(x)想象为一根线L(x),线的长度就是元素的值。将这些线依次按照L(1)、L(2)、……、L(n)的顺序连接起来,组成长线L。L(1)、L(2)、……、L(n)称为L的子线。根据概率的相关知识,如果我们在L上随机选择一个点,那么这个点所在的子线很有可能是比较长的子线,而这个子线对应的数据点就可以作为种子点。下文中kmeans++的两种实现均是这个原理。
3、python版本的kmeans++
在http://rosettacode.org/wiki/K-means%2B%2B_clustering 中能找到多种编程语言版本的Kmeans++实现。下面的内容是基于python的实现(中文注释是笔者添加的):

复制代码代码如下:

from math import pi, sin, cos
from collections import namedtuple
from random import random, choice
from import

try:
import psyco
psyco.full()
except ImportError:
pass
FLOAT_MAX = 1e100
class Point:
__slots__ = ["x", "y", "group"]
def __init__(self, x=0.0, y=0.0, group=0):
self.x, self.y, self.group = x, y, group
def generate_points(npoints, radius):
points = [Point() for _ in xrange(npoints)]
# note: this is not a uniform 2-d distribution
for p in points:
r = random() * radius
ang = random() * 2 * pi
p.x = r * cos(ang)
p.y = r * sin(ang)
return points
def nearest_cluster_center(point, cluster_centers):
"""Distance and index of the closest cluster center"""
def sqr_distance_2D(a, b):
return (a.x - b.x) ** 2 + (a.y - b.y) ** 2
min_index = point.group
min_dist = FLOAT_MAX
for i, cc in enumerate(cluster_centers):
d = sqr_distance_2D(cc, point)
if min_dist > d:
min_dist = d
min_index = i
return (min_index, min_dist)
'''
points是数据点,nclusters是给定的簇类数目
cluster_centers包含初始化的nclusters个中心点,开始都是对象->(0,0,0)
'''
def kpp(points, cluster_centers):
cluster_centers[0] = (choice(points)) #随机选取第一个中心点
d = [0.0 for _ in xrange(len(points))] #列表,长度为len(points),保存每个点离最近的中心点的距离
for i in xrange(1, len(cluster_centers)): # i=1...len(c_c)-1
sum = 0
for j, p in enumerate(points):
d[j] = nearest_cluster_center(p, cluster_centers[:i])[1] #第j个数据点p与各个中心点距离的最小值
sum += d[j]
sum *= random()
for j, di in enumerate(d):
sum -= di
if sum > 0:
continue
cluster_centers[i] = (points[j])
break
for p in points:
p.group = nearest_cluster_center(p, cluster_centers)[0]
'''
points是数据点,nclusters是给定的簇类数目
'''
def lloyd(points, nclusters):
cluster_centers = [Point() for _ in xrange(nclusters)] #根据指定的中心点个数,初始化中心点,均为(0,0,0)
# call k++ init
kpp(points, cluster_centers) #选择初始种子点
# 下面是kmeans
lenpts10 = len(points) >> 10
changed = 0
while True:
# group element for centroids are used as counters
for cc in cluster_centers:
cc.x = 0
cc.y = 0
cc.group = 0
for p in points:
cluster_centers[p.group].group += 1 #与该种子点在同一簇的数据点的个数
cluster_centers[p.group].x += p.x
cluster_centers[p.group].y += p.y
for cc in cluster_centers: #生成新的中心点
cc.x /= cc.group
cc.y /= cc.group
# find closest centroid of each PointPtr
changed = 0 #记录所属簇发生变化的数据点的个数
for p in points:
min_i = nearest_cluster_center(p, cluster_centers)[0]
if min_i != p.group:
changed += 1
p.group = min_i
# stop when 99.9% of points are good
if changed <= lenpts10:
break
for i, cc in enumerate(cluster_centers):
cc.group = i
return cluster_centers
def print_eps(points, cluster_centers, W=400, H=400):
Color = namedtuple("Color", "r g b");
colors = []
for i in xrange(len(cluster_centers)):
colors.append(Color((3 * (i + 1) % 11) / 11.0,
(7 * i % 11) / 11.0,
(9 * i % 11) / 11.0))
max_x = max_y = -FLOAT_MAX
min_x = min_y = FLOAT_MAX
for p in points:
if max_x < p.x: max_x = p.x
if min_x > p.x: min_x = p.x
if max_y < p.y: max_y = p.y
if min_y > p.y: min_y = p.y
scale = min(W / (max_x - min_x),
H / (max_y - min_y))
cx = (max_x + min_x) / 2
cy = (max_y + min_y) / 2
print "%%!PS-Adobe-3.0\n%%%%BoundingBox: -5 -5 %d %d" % (W + 10, H + 10)
print ("/l {rlineto} def /m {rmoveto} def\n" +
"/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" +
"/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " +
" gsave 1 setgray fill grestore gsave 3 setlinewidth" +
" 1 setgray stroke grestore 0 setgray stroke }def")
for i, cc in enumerate(cluster_centers):
print ("%g %g %g setrgbcolor" %
(colors[i].r, colors[i].g, colors[i].b))
for p in points:
if p.group != i:
continue
print ("%.3f %.3f c" % ((p.x - cx) * scale + W / 2,
(p.y - cy) * scale + H / 2))
print ("\n0 setgray %g %g s" % ((cc.x - cx) * scale + W / 2,
(cc.y - cy) * scale + H / 2))
print "\n%%%%EOF"
def main():
npoints = 30000
k = 7 # # clusters
points = generate_points(npoints, 10)
cluster_centers = lloyd(points, k)
print_eps(points, cluster_centers)
main()

上述代码实现的算法是针对二维数据的,所以Point对象有三个属性,分别是在x轴上的值、在y轴上的值、以及所属的簇的标识。函数lloyd是kmeans++算法的整体实现,其先是通过kpp函数选取合适的种子点,然后对数据集实行kmeans算法进行聚类。kpp函数的实现完全符合上述kmeans++的基本思路的2、3、4步。

❽ kmeans算法用Python怎么实现

k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。
1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等
2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)
3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。

❾ 用python2.7做kmeans聚类算法怎么导入数据

指定文件名
问题描述:一堆二维数据,用kmeans算法对其进行聚类,下面例子以分k=3为例。
原数据:
1.5,3.1
2.2,2.9
3,4
2,1
15,25
43,13
32,42
0,0
8,9
12,5
9,12
11,8
22,33
24,25

实现代码:

[python] view plain
#coding:utf-8
from numpy import *
import string
import math

def loadDataSet(filename):
dataMat = []
fr = open(filename)
for line in fr.readlines():
element = line.strip('\n').split(',')
number = []
for i in range(len(element)):
number.append(string.atof(element[i]))
dataMat.append(number)
return dataMat

def distEclud(vecA, vecB):
count = len(vecA)
s = 0.0
for i in range(0, count):
s = s + power(vecA[i]-vecB[i], 2)
return sqrt(s)

def clusterOfElement(means, element):
min_dist = distEclud(means[0], element)
lable = 0
for index in range(1, len(means)):
dist = distEclud(means[index], element)
if(dist < min_dist):
min_dist = dist
lable = index
return lable

def getMean(cluster): #cluster=[[[1,2],[1,2],[1,2]....],[[2,1],[2,1],[2,1],[2,1]...]]
num = len(cluster) #1个簇的num,如上为3个
res = []
temp = 0
dim = len(cluster[0])
for i in range(0, dim):
for j in range(0, num):
temp = temp + cluster[j][i]
temp = temp / num
res.append(temp)
return res

def kMeans():
k = 3
data = loadDataSet('data.txt')
print "data is ", data
inite_mean = [[1.1, 1], [1, 1],[1,2]]

count = 0
while(count < 1000):
count = count + 1
clusters = []
means = []
for i in range(k):
clusters.append([])
means.append([])

for index in range(len(data)):
lable = clusterOfElement(inite_mean, data[index])
clusters[lable].append(data[index])

for cluster_index in range(k):
mea = getMean(clusters[cluster_index])
for mean_dim in range(len(mea)):
means[cluster_index].append(mea[mean_dim])

for mm in range(len(means)):
for mmm in range(len(means[mm])):
inite_mean[mm][mmm] = means[mm][mmm]

print "result cluster is ", clusters
print "result means is ", inite_mean

kMeans()

❿ k-means聚类算法python实现,导入的数据集有什么要求

一,K-Means聚类算法原理
k-means 算法接受参数 k
;然后将事先输入的n个数据对象划分为
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对
象”(引力中心)来进行计算的。
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

阅读全文

与k均值算法程序python实现相关的资料

热点内容
如何玩转顺丰app 浏览:648
解压球的正确方法 浏览:187
python开发的程序运行速度 浏览:495
基于单片机的pcf8591 浏览:787
暑假python培训班在哪 浏览:510
见顶之红选股器源码公式 浏览:223
逻辑加密卡怎么样 浏览:270
下载和解压有先后顺序吗 浏览:529
svn教程linux 浏览:722
同花顺app股票账户怎么绑定银行卡 浏览:497
用python爬豆瓣数据 浏览:713
androidedittext长度限制 浏览:251
红警3命令与征服苏联 浏览:409
25岁学习当程序员好吗 浏览:986
autojs源码解析 浏览:730
外分加密是啥意思 浏览:692
如何克隆有加密狗的u盘 浏览:750
单片机功率电路 浏览:573
如何加密隐私安全 浏览:603
加密狗登录界面弹补出来 浏览:338