导航:首页 > 源码编译 > 噪声对边界跟踪算法

噪声对边界跟踪算法

发布时间:2022-07-26 04:40:43

① 如何用eian20预测交通噪声对各楼层的影响

根据《环境影响评价技术导则一声环境》(HJ2.4-2009):声环境影响评价工作等级一般分为三级,其中一级为详细评价,二级为一般评价,三级为简要评价。各等级评价工作的基本要求(1)一级评价工作基本要求?声环境质量现状:评价范围内具有代表性的敏感目标的声环境质量现状需要实测。对实测结果进行评价,并分析现状声源的构成及其对敏感目标的影响;?工程分析:给出建设项目对环境有影响的主要声源的数量、位置和声源源强,并在标有比例尺的图中标识固定声源的具体位置或流动声源的路线、跑道等位置。在缺少声源源强的相关资料时,应通过类比测量取得,并给出类比测量的条件;?噪声预测:①要覆盖全部敏感目标,给出各敏感目标的预测值。②给出厂界(或场界、边界)噪声值。③等声级线:固定声源评价、机场周围飞机噪声评价、流动声源经过城镇建成区和规划区路段的评价应绘制等声级线图,当敏感目标高于(含)三层建筑时,还应绘制垂直方向的等声级线图。④环境影响:给出建设项目建成后不同类别的声环境功能区内受影响的人口分布、噪声超标的范围和程度。给出项目建成后各噪声级范围内受影响的人口分布、噪声超标的范围和程度。?预测时段:不同代表性时段噪声级可能发生变化的建设项目,应分别预测其不同时段的噪声级;?方案比选:对工程可行性研究和评价中提出的不同选址(选线)和建设布局方案,应根据不同方案噪声影响人口的数量和噪声影响的程度进行比选,并从声环境保护角度提出最终的方案;?噪声防治措施:针对建设项目的工程特点和所在区域的环境特征提出噪声防治措施,并进行经济、技术可行性论证,明确防治措施的最终降噪效果和达标分析。(2)二级评价工作基本要求?声环境质量现状:评价范围内具有代表性的敏感目标的声环境质量现状以实测为主,可适当利用评价范围内已有的声环境质量监测资料,并对声环境质量现状进行评价;?工程分析:给出建设项目对环境有影响的主要声源的数量、位置和声源源强,并在标有比例尺的图中标识固定声源的具体位置或流动声源的路线、跑道等位置。在缺少声源源强的相关资料时,应通过类比测量取得,并给出类比测量的条件;?噪声预测:①预测点应覆盖全部敏感目标,给出各敏感目标的预测值。②给出厂界(或场界、边界)噪声值。③等声级线:根据评价需要绘制等声级线图。④给出建设项目建成后不同类别的声环境功能区内受影响的人口分布、噪声超标的范围和程度。?预测时段:不同代表性时段噪声级可能发生变化的建设项目,应分别预测其不同时段的噪声级;?噪声防治措施:从声环境保护角度对工程可行性研究和评价中提出的不同选址(选线)和建设布局方案的环境合理性进行分析。针对建设项目的工程特点和所在区域的环境特征提出噪声防治措施,并进行经济、技术可行性论证,给出防治措施的最终降噪效果和达标分析。(3)三级评价工作基本要求?重点调查评价范围内主要敏感目标的声环境质量现状,可利用评价范围内已有的声环境质量监测资料,若无现状监测资料时应进行实测,并对声环境质量现状进行评价;?在工程分析中,给出建设项目对环境有影响的主要声源的数量、位置和声源源强,并在标有比例尺的图中标识固定声源的具体位置或流动声源的路线、跑道等位置。在缺少声源源强的相关资料时,应通过类比测量取得,并给出类比测量的条件;?噪声预测应给出建设项目建成后各敏感目标的预测值及厂界(或场界、边界)噪声值,分析敏感目标受影响的范围和程度;?针对建设项目的工程特点和所在区域的环境特征提出噪声防治措施,并进行达标分析。

② 在双目视觉系统中有哪些比较好的跟踪算法

与普通的图像模板匹配不同的是,立体匹配是通过在两幅或多幅存在视点差异、几何畸变、灰度畸变、噪声干扰的图像对之间进行的,不存在任何标准模板进行匹配。立体匹配方法一般包含以下三个问题:(1)基元的选择,即选择适当的图像特征如点、直线、相位等作为匹配基元;(2)匹配的准则,将关于物理世界的某些固有特征表示为匹配所必须遵循的若干规则,使匹配结果能真实反映景物的本来面目;(3)算法结构,通过利用适当的数学方法设计能正确匹配所选择基元的稳定算法。 根据匹配基元的不同,立体视觉匹配算法目前主要分为三大类,即区域匹配、相位匹配和特征匹配: 基于区域灰度的匹配算法是把一幅图像(基准图)中某一点的灰度邻域作为模板,在另一幅图像(待匹配图)中搜索具有相同(或相似)灰度值分布的对应点邻域,从而实现两幅图像的匹配。这类算法的性能取决于度量算法及搜索策略的选择。另外,也必须考虑匹配窗口大小、形式的选择,大窗口对于景物中存在的遮挡或图像不光滑的情况会更多的出现误匹配,小窗口则不具有足够的灰度变化信息,不同的窗口形式对匹配信息也会有不同的影响。因此应该合理选取匹配区域的大小和形式来达到较好的匹配结果。 相位匹配是近二十年发展起来的一种匹配算法,相位作为匹配基元,即认为图像对中的对应点局部相位是一致的。最常用的相位匹配算法有相位相关法和相位差——频率法,虽然该方法是一种性能稳定、具有较强的抗辐射抗透视畸变能力、简单高效、能得到稠密视差图的特征匹配方法。但是,当局部结构存在的假设不成立时,相位匹配算法因带通输出信号的幅度太低而失去有效性,也就是通常提到的相位奇点问题,在相位奇点附近,相位信息对位置和频率的变化极为敏感,因此用这些像素所确定的相位差异来衡量匹配误差将导致极不可靠的结果。此外,相位匹配算法的收敛范围与带通滤波器的波长有关,通常要考虑相位卷绕,在用相位差进行视差计算时,由于所采用的相位只是原信号某一带通条件下的相位,故视差估计只能限制在某一限定范围之内,随视差范围的增大,其精确性会有所下降。 基于特征的图像匹配方法是目前最常用的方法之一,由于它能够将对整个图像进行的各种分析转化为对图像特征(特征点、特征曲线等)的分析的优点,从而大大减小了图像处理过程的计算量,对灰度变化、图像变形、噪音污染以及景物遮挡等都有较好的适应能力。 基于特征的匹配方法是为使匹配过程满足一定的抗噪能力且减少歧义性问题而提出来的。与基于区域的匹配方法不同,基于特征的匹配方法是有选择地匹配能表示景物自身特性的特征,通过更多地强调空间景物的结构信息来解决匹配歧义性问题。这类方法将匹配的搜索范围限制在一系列稀疏的特征上。利用特征间的距离作为度量手段,具有最小距离的特征对就是最相近的特征对,也就是匹配对。特征间的距离度量有最大最小距离、欧氏距离等。 特征点匹配算法严格意义上可以分成特征提取、特征匹配和消除不良匹配点三步。特征匹配不直接依赖于灰度,具有较强的抗干扰性。该类方法首先从待匹配的图像中提取特征,用相似性度量和一些约束条件确定几何变换,最后将该变换作用于待匹配图像。匹配中常用的特征基元有角点、边缘、轮廓、直线、颜色、纹理等。同时,特征匹配算法也同样地存在着一些不足,主要表现为: (l)特征在图像中的稀疏性决定了特征匹配只能得到稀疏的视差场,要获得密集的视差场必须通过使用插值的过程,插值过程通常较为复杂。 (2)特征的提取和定位的准确与否直接影响特征匹配结果的精确度。 (3)由于其应用场合的局限性,特征匹配往往适用于具有特征信息显着的环境中,在缺少显着主导特征环境中该方法有很大困难。 总之,特征匹配基元包含了算法编程上的灵活性以及令人满意的统计特性。算法的许多约束条件均能清楚地应用于数据结构,而数据结构的规则性使得特征匹配非常适用于硬件设计。例如,基于线段的特征匹配算法将场景模型描绘成相互联结的边缘线段,而不是区域匹配中的平面模型,因此能很好地处理一些几何畸变问题,对对比度和明显的光照变化等相对稳定。特征匹配由于不直接依赖于灰度,计算量小,比基于区域的匹配算法速度快的多。且由于边缘特征往往出现在视差不连续的区域,特征匹配较易处理立体视觉匹配中的视差不连续问题。

③ canny算法的算法的实现步骤

Canny边缘检测算法可以分为以下5个步骤: 应用高斯滤波来平滑图像,目的是去除噪声 找寻图像的强度梯度(intensity gradients) 应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是) 应用双阈值的方法来决定可能的(潜在的)边界 利用滞后技术来跟踪边界 1. 图像平滑(去噪声)
任何边缘检测算法都不可能在未经处理的原始数据上很好地工作,所以第一步是对原始数据与高斯 mask 作卷积,得到的图像与原始图像相比有些轻微的模糊(blurred)。这样,单独的一个像素噪声在经过高斯平滑的图像上变得几乎没有影响。以下为一个5X5高斯滤波器(高斯核,标准差delta=1.4),其中A为原始图像,B为平滑后的图像。


2. 寻找图像中的强度梯度
Canny算法的基本思想是找寻一幅图相中灰度强度变化最强的位置。所谓变化最强,即指梯度方向。平滑后的图像中每个像素点的梯度可以由Sobel算子(一种卷积运算)来获得(opencv中有封装好的函数,可以求图像中每个像素点的n阶导数)。首先,利用如下的核来分别求得沿水平(x)和垂直(y)方向的梯度G_X和G_Y。
K_{GX} = [-1 0 1 ; -2 0 2 ; -1 0 1], K_{GY} = {1 2 1 ; 0 0 0 ; -1 -2 -1}
之后便可利用公式来求得每一个像素点的梯度度量值(gradient magnitude,可能翻译得不准确)。
,有时为了计算简便,也会使用G_X和G_Y的无穷大范数来代替二范数。把平滑后的图像中的每一个点用G代替,可以获得如下图像。从下图可以看出,在变化剧烈的地方(边界处),将获得较大的梯度度量值G,对应的颜色为白色。然而,这些边界通常非常粗,难以标定边界的真正位置。为了做到这一点(参考非极大抑制Non-maximum suppression一节),还必须存储梯度方向,其公式如下图所示。也就是说在这一步我们会存数两块数据,一是梯度的强度信息,另一个是梯度的方向信息。

3. 非极大抑制Non-maximum suppression
这一步的目的是将模糊(blurred)的边界变得清晰(sharp)。通俗的讲,就是保留了每个像素点上梯度强度的极大值,而删掉其他的值。对于每个像素点,进行如下操作:
a) 将其梯度方向近似为以下值中的一个(0,45,90,135,180,225,270,315)(即上下左右和45度方向)
b) 比较该像素点,和其梯度方向正负方向的像素点的梯度强度
c) 如果该像素点梯度强度最大则保留,否则抑制(删除,即置为0)
为了更好的解释这个概念,看下图。

图中的数字代表了像素点的梯度强度,箭头方向代表了梯度方向。以第二排第三个像素点为例,由于梯度方向向上,则将这一点的强度(7)与其上下两个像素点的强度(5和4)比较,由于这一点强度最大,则保留。处理后效果如下图所示。

上图中,可以想象,边界处的梯度方向总是指向垂直于边界的方向,即最后会保留一条边界处最亮的一条细线。
4.双阈值(Double Thresholding)
经过非极大抑制后图像中仍然有很多噪声点。Canny算法中应用了一种叫双阈值的技术。即设定一个阈值上界和阈值下界(opencv中通常由人为指定的),图像中的像素点如果大于阈值上界则认为必然是边界(称为强边界,strong edge),小于阈值下界则认为必然不是边界,两者之间的则认为是候选项(称为弱边界,weak edge),需进行进一步处理。经过双阈值处理的图像如下图所示

上图中右侧强边界用白色表示,弱边界用灰色表示。
5.利用滞后的边界跟踪
这里就不细作解释了。大体思想是,和强边界相连的弱边界认为是边界,其他的弱边界则被抑制。
以上内容均翻译自参考文献【4】
上一个网络版本:
图像中的边缘可能会指向不同的方向,所以 Canny 算法使用 4 个 掩模(mask) 检测水平、垂直以及对角线方向的边缘。原始图像与每个 mask 所作的卷积都存储起来。对于每个点我们都标识在这个点上的最大值以及生成的边缘的方向。这样我们就从原始图像生成了图像中每个点亮度梯度图以及亮度梯度的方向。以下两个公式分别求取高斯滤波后图像的梯度幅值及其方向的表达式。这一步,也叫称为非极大抑制(Non-maximum suppression)。


3. 在图像中跟踪边缘
较高的亮度梯度比较有可能是边缘,但是没有一个确切的值来限定多大的亮度梯度是边缘多大又不是,所以 Canny 使用了滞后阈值。
滞后阈值(Hysteresis thresholding) 需要两个阈值,即高阈值与低阈值。假设图像中的重要边缘都是连续的曲线,这样我们就可以跟踪给定曲线中模糊的部分,并且避免将没有组成曲线 的噪声像素当成边缘。所以我们从一个较大的阈值开始,这将标识出我们比较确信的真实边缘,使用前面导出的方向信息,我们从这些真正的边缘开始在图像中跟踪 整个的边缘。在跟踪的时候,我们使用一个较小的阈值,这样就可以跟踪曲线的模糊部分直到我们回到起点。
一旦这个过程完成,我们就得到了一个二值图像,每点表示是否是一个边缘点。
一个获得亚像素精度边缘的改进实现是在梯度方向检测二阶方向导数的过零点,它在梯度方向的三阶方向导数满足符号条件。
滞后阈值也可以用于亚像素边缘检测。

④ 如何判断图像中的噪声类型

利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。

常用的信息提取方法是遥感影像计算机自动分类。首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。

在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。

利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。

计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。

与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。

细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。

相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。

图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。

图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。

图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。

图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。

阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。

当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。

为了获得图像的边缘人们提出了多种边缘检测方法,如Sobel, Canny edge,
LoG。在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。

对于图像中某些符合参数模型的主导特征,如直线、圆、椭圆等,可以通过对其参数进行聚类的方法,抽取相应的特征。

区域增长方法是根据同一物体区域内象素的相似性质来聚集象素点的方法,从初始区域(如小邻域或甚至于每个象素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象素的相似性度量可以包括平均灰度值、纹理、颜色等信息。

区域增长方法是一种比较普遍的方法,在没有先验知识可以利用时,可以取得最佳的性能,可以用来分割比较复杂的图像,如自然景物。但是,区域增长方法是一种迭代的方法,空间和时间开销都比较大。

基于像素级别的信息提取以单个像素为单位,过于着眼于局部而忽略了附近整片图斑的几何结构情况,从而严重制约了信息提取的精度,而面向对象的遥感信息提取,综合考虑了光谱统计特征、形状、大小、纹理、相邻关系等一系列因素,因而具有更高精度的分类结果。面向对象的遥感影像分析技术进行影像的分类和信息提取的方法如下:

首先对图像数据进行影像分割,从二维化了的图像信息阵列中恢复出图像所反映的景观场景中的目标地物的空间形状及组合方式。影像的最小单元不再是单个的像素,而是一个个对象,后续的影像分析和处理也都基于对象进行。

然后采用决策支持的模糊分类算法,并不简单地将每个对象简单地分到某一类,而是给出每个对象隶属于某一类的概率,便于用户根据实际情况进行调整,同时,也可以按照最大概率产生确定分类结果。在建立专家决策支持系统时,建立不同尺度的分类层次,在每一层次上分别定义对象的光谱特征、形状特征、纹理特征和相邻关系特征。其中,光谱特征包括均值、方差、灰度比值;形状特征包括面积、长度、宽度、边界长度、长宽比、形状因子、密度、主方向、对称性,位置,对于线状地物包括线长、线宽、线长宽比、曲率、曲率与长度之比等,对于面状地物包括面积、周长、紧凑度、多边形边数、各边长度的方差、各边的平均长度、最长边的长度;纹理特征包括对象方差、面积、密度、对称性、主方向的均值和方差等。通过定义多种特征并指定不同权重,建立分类标准,然后对影像分类。分类时先在大尺度上分出"父类",再根据实际需要对感兴趣的地物在小尺度上定义特征,分出"子类"。

⑤ 自动跟踪的跟踪算法

质心跟踪算法:这种跟踪方式用于跟踪有界目标,且目标与环境相比有明显不同灰度等级,如空中飞机等。目标完全包含在镜头视场范围内。

相关跟踪算法:相关可用来跟踪多种类型的目标,当跟踪目标无边界且动态不是很强时这种方式非常有效。典型应用于:目标在近距离的范围,且目标扩展到镜头视场范围外,如航行在大海中的一艘船。

相位相关算法:相位相关算法是非常通用的算法,既可以用来跟踪无界目标也可以用来跟踪有界目标。在复杂环境下(如地面的汽车)能给出一个好的效果。

多目标跟踪算法:多目标跟踪用于有界目标如飞机、地面汽车等。它们完全在跟踪窗口内。对复杂环境里的小目标跟踪,本算法能给出一个较好的性能。
边缘跟踪算法:当跟踪目标有一个或多个确定的边缘而同时却又具有不确定的边缘,这时边缘跟踪是最有效的算法。典型如火箭发射,它有确定好的前边缘,但尾边缘由于喷气而不定。

场景锁定算法:该算法专门用于复杂场景的跟踪。适合于空对地和地对地场景。这个算法跟踪场景中的多个目标,然后依据每个点的运动,从而估计整个场景全局运动,场景中的目标和定位是自动选择的。当存在跟踪点移动到摄像机视场外时,新的跟踪点能自动被标识。瞄准点初始化到场景中的某个点,跟踪启动,同时定位瞄准线。在这种模式下,能连续跟踪和报告场景里的目标的位置。

组合跟踪算法:顾名思义这种跟踪方式是两种具有互补特性的跟踪算法的组合:相关类算法 + 质心类算法。它适合于目标尺寸、表面、特征改变很大的场景。

⑥ 动态边界自动识别技术是什么

利用数字图像处理技术已成为解决复杂产品样件反求设计与再设计问题的重要辅助手段,而针对复杂零件 ICT(InstrialComputedTomography)切片图像的边界轮廓检测和提取精度对反求建模的精度影响至关重要。本文 的主要目的是针对有噪声信号影响的数字图像,在比较现有边界检测与提取算法的基础上,提出了基于亚像素精度 的边界监测与提取算法。为了对该方法的精度进行分析,设计了一个可进行微量驱动控制的工作平台,通过记录工 作平台的移动量和通过边界检测与提取算法得到的位移量之间进行比较的方法分析其精度。通过对误差量使用统 计的方法进行分析,证明了该算法不但能够达到1/4像素的亚像素精度,而且还有计算效率高和计算机开销量小的 特点。

⑦ 噪声对利用直方图取阈值进行图像分割的算法会有哪些影响

答:由于噪声会使图像中某些像素的灰度值增大或减小,此时的直方图图会变得不平滑;同时,噪声可能会填满直方图中的谷,还有可能产生新的峰,或者噪声会使直方图的峰值变低,甚至被淹没。此时直方图 不能完全反映出图像的像素 分布情况,这 对于那些利用直方图来取阈值的图像分割算法来说, 所取的阈值也就必然会存在偏差, 造成分割的不准确。

⑧ 图像边缘检测算法的研究与实现 的开题报告

摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。
关键词 DM642;Sobel算子;程序优化;图像边缘检测

1 引言
边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。
近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。
2 Sobel边缘检测算法的改进
经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。
2.1 图像加权中值滤波
由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。
2.2 增加方向模板
除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。
2.3 边缘的定位及噪声的去除
通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。

图1 边缘检测8个方向模板

图2 系统结构图
3 基于TMS320DM642的图像处理的设计及算法优化
3.1 TMS320DM642功能模块及图像处理系统的硬件结构
DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。
TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相环12倍频后产生600 MHz的工作频率。DM642采用了2级缓存结构(L1和L2),大幅度提高了程序的运行性能。片内64位的EMIF(External Memory Interface)接口可以与SDRAM、Flash等存储器件无缝连接,极大地方便了大量数据的搬移。更重要的是,作为一款专用视频处理芯片,DM642包括了3个专用的视频端口(VP0~VP2),用于接收和处理视频,提高了整个系统的性能。此外,DM642自带的EMAC口以及从EMIF 口扩展出来的ATA口,还为处理完成后产生的海量数据提供了存储通道。
本系统是采用瑞泰公司开发的基于TI TMS320DM642 DSP芯片的评估开发板——ICETEK DM642 PCI。在ICETEK DM642 PCI评估板中将硬件平台分为五个部分,分别是视频采集、数据存储、图像处理、结果显示和电源管理。视频采集部分采用模拟PAL制摄像头,配合高精度视频A/D转换器得到数字图像。基于DSP的视频采集要求对视频信号具备采集,实时显示、对图像的处理和分析能力。视频A/D采样电路—SAA7115与视频端口0或1相连,实现视频的实时采集功能。视频D/A电路—SAA7105与视频口2相连,视频输出信号支持RGB、HD合成视频、PAL/NTSC复合视频和S端子视频信号。通过I2C总线对SAA7105的内部寄存器编程实现不同输出。
整个系统过程由三个部分组成:图像采集—边缘处理—输出显示,如图2所示。摄像头采集的视频信号经视频编码器SAA7115数字化,DM642通过I2C总线对SAA7115进行参数配置。在SAA7115内部进行一系列的处理和变换后形成的数字视频数据流,输入到核心处理单元DM642。经过DSP处理后的数字视频再经过SAA7105视频编码器进行D/A转换后在显示器上显示最终处理结果。
3.2 图像处理的软件设计和算法优化的实现
由于在改进Sobel边缘检测算子性能的同时,也相对增加了计算量,尤其是方向模板的增加,每个像素点均由原来的2次卷积运算增加为8次卷积运算,其实时性大大减弱。为了改进上述的不足,在深入研究处理系统和算法后,针对TMS320DM642的硬件结构特点,研究适合在TMS320DM642中高效运行的Sobel改进算法,满足实时处理的要求。整个程序的编写和调试按照C6000软件开发流程进行,流程分为:产生C代码、优化C代码和编写线性汇编程序3个阶段。使用的工具是TI的集成开发环境CCS。在CCS下,可对软件进行编辑、编译、调试、代码性能测试等工作。在使用C6000编译器开发和优化C代码时[7-8],对C代码中低效率和需要反复调用的函数需用线性汇编重新编写,再用汇编优化器优化。整个系统的控制以及数字图像处理是用C程序实现,大部分软件设计采用C程序实现,这无疑提高了程序的可读性和可移植性,而汇编程序主要是实现DM642的各部分初始化。其边缘检测优化算法在DM642中的实现步骤具体如下:
S1:根据DM642的硬件结构要求和控制寄存器设置,初始化系统并编写实现边缘检测算法的C程序。
S2:借助CCS开发环境的优化工具如Profiler等产生.OUT文件。
S3:根据产生的附件文件如.MAP文件,分析优化结果及源程序结构,进一步改进源程序和优化方法。
S4:使用CCS中调试、链接、运行等工具,再生成.OUT可执行文件。
S5:运行程序,如果满足要求则停止;否则重复步骤S2~S4直至满足使用要求。
4 实验结果
本文以Lena图像为例根据上述的硬件环境和算法实现的原理和方法,图4~图6分别给出了在该系统下采集的视频Lena图像及使用边缘检测算子和改进后处理的结果。由实验结果可以看出,在该系统下能实时完成视频图像的处理,并且给出的边缘检测算子能较好的消除噪声的影响,边缘轮廓清晰。该算法不仅能抑制图像中大部分噪声和虚假边缘,还保证了较高的边缘点位精度。

图4 Lena原始图像 图5 传统Sobel算子 图6 改进Sobel算子

5 总结
本文实现了在TMS320DM642评估板上用改进的Sobel算子对实时图像进行边缘检测,无延迟地得到边缘图像。边缘检测效果较好,既提高了图像检测的精度又满足了实时性的要求。从检测结果看,利用该改进后的算子在边缘精确定位、边缘提取都达到了很好的效果,且抗噪声能力强,并为目标跟踪、无接触式检测、自动驾驶、视频监控等领域的应用提供了坚实的基础。
参考文献
[1] 王磊等. 基于Sobel理论的边缘提取改善方法[J].中国图像图形学报,2005.10
[2] 陈宏席. 基于保持平滑滤波的Sobel算子边缘检测.兰州交通大学学报,2006,25(1):86—90
[3] 熊伟. 基于TMS320DM642的多路视频采集处理板卡硬件设计与实现[ M]. 国外电子元器件,2006
[4] 朱立.一种具有抗噪声干扰的图像边缘提取算法的研究[J].电子技术应用.2004,25(1)
[5] 刘松涛,周晓东.基于TMS320C6201的实时图像处理系统[J].计算机工程,2005(7):17—23
[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003
[7] TMS320C6x Optimizing C Compiler User’s Guide’ TEXAS INSTRUMENTS”,2002
[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001

⑨ 噪声估计的方法

介绍几种常见的单通道噪声估计算法。噪声估计主要基于以下三个现象。
(1)在音频信号中,闭塞因闭合段频谱能量趋于0或者接近噪声水平。噪声在频谱上分布不均匀,不同的频带具有不同的SNR.对于任意类型噪声,只要该频带无语音的概率很高或者SNR很低,则可以估计/更新该频带的噪声谱,这类思想是递归平均噪声估计算法(the recursive-averaging type of noise-estimation algorithms)的支撑点。

(2)即使在语音活动的区域,带噪语音信号在单个频带的功率通常会衰减到噪声的功率水平,我们因此可以追踪在短时窗内(0.4~1s)带噪语音谱每个频带的最小值,实现各个频带噪声的估计。该现象是最小值跟踪算法(the minima-tracking algorithms)的支撑点。

(3)每个频带能量的直方图揭示了一个理论:出现频次最高的值对应频带的噪声水平。有时谱能量直方图有两种模式:1)低能量对应无声段、语音的低能量段;2)高能量模式对应(noisy)语音的浊音段。低能量成分大于高能量成分。

因而总结出三类噪声估计算法

1、递归平均噪声算法

2、最小值跟踪算法
3、直方图噪声估计算法

⑩ 多假设追踪方法mht是什么算法

多假设跟踪算法是一种数据关联类型的多目标跟踪算法,实现方式分为面向假设的MHT和面向航迹的MHT两种。
MHT算法的实现流程包括航迹关联和航迹维护两个步骤。
MHT算法计算量庞大,随着量测数和目标数呈指数级增长,但对于杂波密集环境下的多目标跟踪具有很高的准确率。

阅读全文

与噪声对边界跟踪算法相关的资料

热点内容
pdf转dwg怎么转 浏览:53
单片机微小电阻测量 浏览:136
表格25兆怎么压缩 浏览:67
java开发公司的 浏览:129
东风天锦压缩车工作指示灯不亮 浏览:983
剑侠情缘1源码 浏览:530
cad2011怎么转换成pdf格式 浏览:964
传祺gs5安卓车机如何还原车机 浏览:900
单片机和编程器互相传输数据 浏览:90
app订单怎么取消 浏览:467
程序员用双显示器有什么作用 浏览:611
网约车算法杀熟 浏览:6
卡萨帝用的什么压缩机 浏览:155
350乘20算法 浏览:92
自助编程软件app 浏览:438
服务器如何看日活数 浏览:686
数控车床原理图及编程 浏览:289
java文件流下载 浏览:340
编程工作工资多少 浏览:441
专业安全文件夹 浏览:781