㈠ 对数函数的运算公式.
对数的运算性质
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,
log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
㈡ 求log函数运算公式大全
logₐ(MN)=logₐM+logₐN
logₐ(M/N)=logₐM-logₐN
logₐ(1/N)=-logₐN
logₐ(ₐᵏ)=k
logₐMⁿ=nlogₐM
(2)对数函数算法视频教学扩展阅读:
如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。
在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
㈢ 对数函数计算公式是什么
对数函数计算公式如下:
1、a^(log(a)(b))=b。
2、log(a)(a^b)=b。
3、log(a)(MN)=log(a)(M)+log(a)(N)。
4、log(a)(M÷N)=log(a)(M)-log(a)(N)。
5、log(a)(M^n)=nlog(a)(M)。
6、log(a^n)M=1/nlog(a)(M)。
对数相关应用:
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。
对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。
对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
㈣ 对数log怎么计算
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。
㈤ log 的计算方法
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N)
3、log(a)(M÷N)=log(a)(M)-log(a)(N)
4、log(a)(M^n)=nlog(a)(M)
5、lgM=log(10)(M)
上是增函数。
㈥ 对数函数运算是怎么样的
对数函数的运算公式:
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N)。
(2)log(a)(M/N)=log(a)(M)-log(a)(N)。
(3)log(a)(M^n)=nlog(a)(M)(n∈R)。
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。
(6)a^(log(b)n)=n^(log(b)a)。
(7)对数恒等式:a^log(a)N=N。
对数相关应用:
对数在数学内外有许多应用,这些事件中的一些与尺度不变性的概念有关,例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放,这引起了对数螺旋,Benford关于领先数字分配的定律也可以通过尺度不变性来解释。
对数也与自相似性相关,例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题,自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。
对数刻度对于量化与其绝对差异相反的值的相对变化是有用的,此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据,对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。