A. python中的随机数是怎么实现的
PYTHON中的伪随机数发生器用的是梅森旋转算法。
梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。
梅森旋转算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度运算库和GSL的默认伪随机数产生器。从C++11开始,C++也可以使用这种算法。
整个算法主要分为三个阶段:获得基础的梅森旋转链;对于旋转链进行旋转算法;对于旋转算法所得的结果进行处理。
算法实现的过程中,参数的选取取决于梅森素数,故此得名。
梅森素数由梅森数而来。所谓梅森数,是指形如2↑p-1的一类数,其中指数p是素数,常记为Mp 。如果梅森数是素数,就称为梅森素数。
例如4-1=3,8-1=7,16-1=15(不是素数),32-1=31,64-1=63(不是素数)等等。
B. c语言 完全数 最快算法
20亿内的完全数也就6个,,,,,可以先找梅森素数(即,如果(2^p-1)是素数,那么它就是梅森素数),再根据用(2^p-1)2^(p-1),这个就是完全数。
如果楼主非要用自己那方法找,还是可以优化下的,不过提高得不多,
一个办法就是在
if(i%j==0)s+=j;
if(s==i)printf("%ld\n",i);
之间加入一句。if(s>i) break;
C. 用python如何最快的算出梅森质数
你是要真的算,还是为了验证
梅森素数,是二的p次方减一,其中p也是素数
那把你的程序就可以写一个生成素数的算法,代入公式里p,他在写一个检验素数的算法,然后逐个验证P,就知道有哪些梅森素数
D. c++程序 梅森素数 一直超时 有没有快速算法
这个是有专门的检验算法的。 目前最好的算法是:Lucas–Lehmer(卢卡斯-莱默)算法。
MersennePrimes:
235713171931