Ⅰ 什么是混合整数线性规划模型
混合整数线性规划是整数线性规划模型的一种。
整数线性规划模型分类:
若i={0,1},j={1,…,n},即全部的决策变量仅取0或1,称之为0-1规划;
若j是{1,2…n}的非空真子集,即仅有部分决策变量要求取整数,称为混合整数线性规划;
若j={1,2,…n},即全部的决策变量都取整数,称为纯整数线性规划;
Ⅱ 粒子群算法解决实际问题时 其维度如何与实际问题相对应
要明白粒子群算法中,粒子的位置即代表了问题的解,例如你需要求一条路径 路径上假定N个节点 那么N即是这个粒子中的维度
Ⅲ pso的优化求解
PSO算法被广泛应用于各种优化问题,并且已经成为优化领域中的一个有效算法。除了普通函数优化之外,还包括如下方面。
混合整数非线性规划
很多求解整数规划的算法是在采用实数域的算法进行优化后,再将结果取整作为整数规划的近似解。这种做法常常导致不满足约束或远离最优解。谭瑛提出一种在整数空间中直接进行进化计算的PSO算法。刘钊针对混合整数非线性规划中可行解产生代价较高的问题,建立了保证都是合法解的备用微粒库,并提出微粒迁移策略,帮助微粒跳出局部最优。
噪声和动态环境
动态系统的状态会经常改变,甚至可能会连续变化。许多实际系统都会涉及到动态环境。例如,由于顾客的优先级、意外的设备维护等导致的变化,调度系统中大多数计算时间都被用来进行重新调度。在实际应用中,这些系统状态的变化就需要经常进行重新优化。
最初使用微粒群算法跟踪动态系统的工作由Carlisle提出,通过周期性地重置所有微粒的记忆来跟踪动态系统。Eberhart也采用类似想法;之后Hu提出一种自适应PSO算法,能够自动跟踪动态系统中的不同变化,并在抛物线benchmark函数上对不同的环境检测和响应技术进行了实验,其中使用的检测方法是监控种群中最优微粒的行为。后来Carlisle使用搜索空间中的一个随机点来确定环境是否发生变化,但是这需要集中控制,与PSO算法的分布式处理模型不符。为此Cui提出TDPSO算法,让最优历史位置的适应值随着时间减小,从而不再需要集中控制。Blackwell在微粒的更新公式中添加了一项惩罚项,来保持微粒处于一个扩展的群中,以应对快速变化的动态环境,该方法中不需要检测最优点是否发生变化。
Parsopoulos等的试验表明,基本PSO算法就可以有效而稳定地在噪声环境中工作,且在很多情况下,噪声的存在还可以帮助PSO算法避免陷入局部最优。Parsopoulos还通过试验研究了UPSO算法在动态环境中的性能。Pugh提出一种抗噪声的PSO算法。Pan将假设检验和最优计算预算分配(OCBA)技术引入微粒群算法,提出PSOOHT算法,来解决噪声环境下的函数优化问题。
上述工作的研究对象都是简单的动态系统,所采用的实验函数是简单的单模函数,并且所涉及的变化都是简单环境下的均匀变化(即固定步长)。而事实上,实际的动态系统经常是非线性的,并在复杂的多模搜索空间中非均匀变化。Li采用四个PSO模型,对一系列不同的动态环境进行了对比研究。
上述方法均是针对仅跟踪单个最优点的情况,
Ⅳ 用粒子群算法求解线性约束整数规划的Matlab程序
对粒子群的约束问题涉及的比较少。这儿摘抄下网络的内容:
PSO算法推广到约束优化问题,分为两类:(http://ke..com/view/1531379.htm)
(1)罚函数法。罚函数的目的是将约束优化问题转化成无约束优化问题。
(2)将粒子群的搜索范围都限制在条件约束簇内,即在可行解范围内寻优。
第一种方法有相关论文,看了下,感觉比较适合等式约束情况,比较类似于在适应度函数中加入拉格朗日乘子的做法,如果论文下不到的话,请留言。
第二种做法倒是用过。大概讲下。
针对你的问题,初始化两维向量,但是由于存在不等式约束,所以考虑先初始化向量的第一维,然后动态算出第二维的范围,随机出第二维变量。然后就是计算适应度值,全局、局部最优。
更新过程一样,先更新第一维变量,然后动态计算第二维的范围,更新第二维,如果更新后超过了边界,则取边界值(或者也可以再次重新更新,直到满足条件,直觉上感觉第一种还好点,第二种可能会出现无法更新的情况),更新完毕后,计算适应度,更新全局、局部最优解。
补充两个链接吧
http://download.csdn.net/detail/yinjian_2004/1567342
论文:基于改进粒子群优化算法的约束多目标优化
Ⅳ 什么是混合整数线性规划(MILP)模型
混合整数线性规划模型的含义:
线性规划模型(Linear Programming, LP):LP的定义比较简单,它指的就是目标函数是线性的,所有约束也是线性的,最后,决策变量可以取任何的实数。如果在线性规划问题中有部分决策变量要求必须是整数, 那么这时的规划问题就转变成混合整数线性规划问题了。
也就是说优化问题不止有条件约束,还有整数约束。
要了解什么是混合整数线性规划模型,第一步是要了解什么是线性规划模型(Linear Programming, LP)。LP的定义比较简单,它指的就是目标函数是线性的,所有约束也是线性的,最后,决策变量可以取任何的实数。
举个例子:
超市里头有卖3种食品,玉米,牛奶和面包,价格,所含的维他命A和卡路里的信息见上表。现在的问题是买多少份的玉米,牛奶,面包,使得总价格最低,而维他命A的总摄取量不小于500但不大于50000,卡路里的总摄取量不小于2000但不大于2250。
现在回到之前的问题,如果在线性规划问题中有部分决策变量,比如上面的X_corn要求必须是整数, 那么这时的规划问题就转变成混合整数线性规划问题了。
Ⅵ 什么是粒子群算法
Eberhart和Kennedy于1995年提出了粒子群优化算法(PSO)[66]。PSO与GA有很多共同之处
Ⅶ 遗传算法、粒子群算法、蚁群算法,各自优缺点和如何混合请详细点 谢谢
遗传算法适合求解离散问题,具备数学理论支持,但是存在着汉明悬崖等问题。
粒子群算法适合求解实数问题,算法简单,计算方便,求解速度快,但是存在着陷入局部最优等问题。
蚁群算法适合在图上搜索路径问题,计算开销会大。
要将三种算法进行混合,就要针对特定问题,然后融合其中的优势,比如将遗传算法中的变异算子加入粒子群中就可以形成基于变异的粒子群算法。