导航:首页 > 源码编译 > 聚类算法kmeans要测试吗

聚类算法kmeans要测试吗

发布时间:2022-08-16 02:43:52

A. 关于K-Means聚类算法的,大家交流一下。

当然是敏感的,跟程序中如何处理数据有很大的关系。比如两个中心点(-1,0)(1,0),这时读入数据(0,0),那么程序计算与所有中心点的距离,因为距离相同,程序会给其中一个,至于给哪个,都是由程序决定,一般按数据存储的先后顺序来给。而且结果不同不能代表聚类结果差,而是说明结果的多样化,本身K的选取就是没有一个约定的方法,所以结果有差别也是理所当然的。关键是你要如何体现你的算法的优越性。就是要跟别的算法作比较,比如从算法的空间、时间复杂度,算法的运行处理速度等等因素来做比较。

B. K均值聚类

k均值聚类算法是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。

聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。

这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。

k均值聚类是最着名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。

C. kmeans聚类算法是什么

K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。

(3)聚类算法kmeans要测试吗扩展阅读:

k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

(1)适当选择c个类的初始中心;

(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;

(3)利用均值等方法更新该类的中心值;

(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。

D. kmeans是否要求样本标记

非监督类的算法不需要样本的标注信息,所以Kmeans不需要样本标注
Kmeans算法属于无监督学习(聚类),对于训练样本的标记信息是未知的
对给定的无标记的样本数据集,事先确定聚类簇数K,让簇内的样本尽可能紧密分布在一起,使簇间的距离尽可能大。K-Means作为无监督的聚类算法,其类似于全自动分类,簇内越相似,聚类效果越好,实现较简单,聚类效果好,因此被广泛使用。用以下的效果图更能直观地看出其过程:

E. 有什么网站提供kmeans算法的测试数据吗

一,K-Means聚类算法原理 k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较校聚类相似度是利用各聚类中对象的均值所获得一个“中心对 象”。

F. kmeans算法是什么

K-means算法是一种基于距离的聚类算法,也叫做K均值或K平均,也经常被称为劳埃德(Lloyd)算法。是通过迭代的方式将数据集中的各个点划分到距离它最近的簇内,距离指的是数据点到簇中心的距离。

K-means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本划分为K个簇。将簇内的数据尽量紧密的连在一起,而让簇间的距离尽量的大。

算法流程

1、选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心。

2、对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类。

3、更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值。

4、判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)。

G. 四种聚类方法之比较

四种聚类方法之比较
介绍了较为常见的k-means、层次聚类、SOM、FCM等四种聚类算法,阐述了各自的原理和使用步骤,利用国际通用测试数据集IRIS对这些算法进行了验证和比较。结果显示对该测试类型数据,FCM和k-means都具有较高的准确度,层次聚类准确度最差,而SOM则耗时最长。
关键词:聚类算法;k-means;层次聚类;SOM;FCM
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
1 聚类算法的分类
目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如着名的FCM算法等。
本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) repeat;
(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(4) 更新簇的平均值,即计算每个簇中对象的平均值;
(5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:

这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据
实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。

如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为:

3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

H. 怎么对k-means聚类结果进行分析

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的 公式 影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束 具体如下: 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i; (3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数; (4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。 工作原理 K-MEANS算法的工作原理及流程 K-MEANS算法 输入:聚类个数k,以及包含 n个数据对象的数据库。 输出:满足方差最小标准的k个聚类。 处理流程 (1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (3) 重新计算每个(有变化)聚类的均值(中心对象) (4) 循环(2)到(3)直到每个聚类不再发生变化为止 k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 工作过程k-means 算法的工作过程 说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数。k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

I. spark机器学习-聚类

spark机器学习-聚类
聚类算法是一种无监督学习任务,用于将对象分到具有高度相似性的聚类中,聚类算法的思想简单的说就是物以类聚的思想,相同性质的点在空间中表现的较为紧密和接近,主要用于数据探索与异常检测,最常用的一种聚类算法是K均值(K-means)聚类算法

算法原理
kmeans的计算方法如下:
1 选取k个中心点
2 遍历所有数据,将每个数据划分到最近的中心点中
3 计算每个聚类的平均值,并作为新的中心点
4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代
算法的时间复杂度上界为O(n*k*t), 其中k为输入的聚类个数,n为数据量,t为迭代次数。一般t,k,n均可认为是常量,时间和空间复杂度可以简化为O(n),即线性的
spark ml编码实践
可在spark-shell环境下修改参数调试以下代码,可以用实际的业务数据做测试评估,业务数据一般是多列,可以把维度列用VectorAssembler组装成向量列做为Kmeans算法的输入列,考虑现实的应用场景,比如做异常数据检测,正常数据分为一类,异常数据分为几类,分别统计正常数据与异常数据的数据量,求百分比等
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors

val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")

// Trains a k-means model
val kmeans = new KMeans().setK(3).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
val model = kmeans.fit(dataset)

// Shows the result
println("Final Centers: ")
model.clusterCenters.foreach(println)
model.clusterCenters.zipWithIndex.foreach(println)

val myres = model.transform(dataset).select("features","prediction")
myres.show()</span>
聚类算法是一类无监督式机器学习算法,聚类效果怎么评估,模型训练参数怎么调优,是否能用管道来训练模型来比较各种不同组合的参数的效果,即网格搜索法(gridsearch),先设置好待测试的参数,MLLib就会自动完成这些参数的不同组合,管道搭建了一条工作流,一次性完成了整个模型的调优,而不是独立对每个参数进行调优,这个还要再确认一下,查看SPARK-14516好像目前还没有一个聚类效果通用的自动的度量方法
像这种代码(不过现在这个代码有问题):
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
import org.apache.spark.ml.{ Pipeline, PipelineStage }

val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")

val kmeans = new KMeans().setK(2).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
//主要问题在这里,没有可用的评估器与label列设置
val evaluator = new BinaryClassificationEvaluator().setLabelCol("prediction")
val paramGrid = new ParamGridBuilder().addGrid(kmeans.initMode, Array("random")).addGrid(kmeans.k, Array(3, 4)).addGrid(kmeans.maxIter, Array(20, 60)).addGrid(kmeans.seed, Array(1L, 2L)).build()
val steps: Array[PipelineStage] = Array(kmeans)
val pipeline = new Pipeline().setStages(steps)

val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(evaluator).setEstimatorParamMaps(paramGrid).setNumFolds(10)
// Trains a model
val pipelineFittedModel = cv.fit(dataset)</span>

J. kmeans聚类算法是什么

kmeans聚类算法是将样本聚类成k个簇(cluster)。

K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。在实际K-Mean算法中,我们一般会多次运行图c和图d,才能达到最终的比较优的类别。

用数据表达式表示

假设簇划分为$(C_1,C_2,...C_k)$,则我们的目标是最小化平方误差E:$$ E = sumlimits_{i=1}^ksumlimits_{x in C_i} ||x-mu_i||_2^2$$。

其中$mu_i$是簇$C_i$的均值向量,有时也称为质心,表达式为:$$mu_i = frac{1}{|C_i|}sumlimits_{x in C_i}x$$。

阅读全文

与聚类算法kmeans要测试吗相关的资料

热点内容
什么app能看财经新闻 浏览:39
数学奇迹神奇运算法 浏览:359
大厂的程序员的水平如何 浏览:700
遗传算法入门经典书籍 浏览:878
源码炮台脚本 浏览:620
在位编辑命令 浏览:347
曲式分析基础教程pdf 浏览:14
php生成静态html页面 浏览:964
怎么分割pdf 浏览:813
压缩垃圾报警器 浏览:629
小公司一般都用什么服务器 浏览:968
java获取时间gmt时间 浏览:821
为什么csgo一直连接不到服务器 浏览:504
安卓登ins需要什么 浏览:836
机器人算法的难点 浏览:226
全自动化编程 浏览:728
程序员高薪限制 浏览:693
压缩图片压缩 浏览:75
美国发明解压魔方 浏览:302
电脑怎么备案网上服务器 浏览:515