导航:首页 > 源码编译 > 卡尔曼滤波跟踪算法

卡尔曼滤波跟踪算法

发布时间:2022-08-26 05:56:29

1. 卡尔曼滤波的基本原理和算法

卡尔曼滤波的原理用几何方法来解释。这时,~X和~Z矩阵中的每个元素应看做向量空间中的一个向量而不再是一个单纯的数。这个向量空间(统计测试空间)可以看成无穷多维的,每一个维对应一个可能的状态。~X和~Z矩阵中的每个元素向量都是由所有可能的状态按照各自出现的概率组合而成(在测量之前,~X和~Z 的实际值都是不可知的)。~X和~Z中的每个元素向量都应是0均值的,与自己的内积就是他们的协方差矩阵。无法给出~X和~Z中每个元素向量的具体表达,但通过协方差矩阵就可以知道所有元素向量的模长,以及相互之间的夹角(从内积计算)。
为了方便用几何方法解释,假设状态变量X是一个1行1列的矩阵(即只有一个待测状态量),而量测变量Z是一个2行1列的矩阵(即有两个测量仪器,共同测量同一个状态量X),也就是说,m=1,n=2。矩阵X中只有X[1]一项,矩阵Z中有Z[1]和Z[2]两项。Kg此时应是一个1行2列的矩阵,两个元素分别记作Kg1 和 Kg2 。H和V此时应是一个2行1列的矩阵。

参考资料:
http://blog.csdn.net/newthinker_wei/article/details/11768443

2. kalman滤波原理

卡尔曼(kalman)滤波 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全包含噪声的测量(英文: measurement)中,估计动态系统的状态。 应用实例 卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的, 包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时, 卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题. 比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度, 加速度的测量值往往在任何时候都有噪声. 卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响, 得到一个关于目标位置的好的估计。 这个估计可以是对当前目标位置的估计(滤波), 也可以是对于将来位置的估计(预测), 也可以是对过去位置的估计(插值或平滑). 命名 这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolf E. Kalman)命名. 虽然Peter Swerling实际上更早提出了一种类似的算法. 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器. 卡尔曼在NASA埃姆斯研究中心访问时, 发现他的方法对于解决阿波罗计划的轨道预测很有用, 后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表. 目前,卡尔曼滤波已经有很多不同的实现. 卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器.除此以外, 还有施密特扩展滤波器,信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种.也行最常见的卡尔曼滤波器是锁相环, 它在收音机,计算机和几乎任何视频或通讯设备中广泛存在.

3. 计算机视觉中,目前有哪些经典的目标跟踪算法

第一章介绍运动的分类、计算机视觉领域中运动分析模型、计算机视觉领域运动检测和目标跟踪技术研究现状、计算机视觉领域中运动分析技术的难点等内容;
第二章介绍传统的运动检测和目标跟踪算法,包括背景差分法、帧间差分法、光流场评估算法等;
第三章介绍具有周期性运动特征的低速目标运动检测和跟踪算法,并以CCD测量系统为例介绍该算法的应用;
第四章介绍高速运动目标识别和跟踪算法,并以激光通信十信标光捕获和跟踪系统为例介绍该算法的应用;
第五章介绍具有复杂背景的目标运动检测过程中采用的光流场算法,包括正规化相关的特性及其改进光流场评估算法,并介绍改进光流场算法的具体应用;
第六章介绍互补投票法实现可信赖运动向量估计。

4. 卡尔曼滤波器的作用

卡尔曼滤波器是一个最优化自回归数据处理算法,应用广泛。使用卡尔曼滤波器可以组合GNSS和INS的测试结果,根据含有噪声的物体传感器测量值,预测出物体的位置坐标和速度。它具有很强的鲁棒性,即使观察到物体的位置有误差,也可以根据物体的运动规律预测一个位置,再结合当前的获取的位置信息,减少传感器误差,增强位置测量的连续性和稳定性,更加准确地输出载体的位置。

5. 卡尔曼滤波参数如何计算

参看高铁梅的《经济周期波动的分析与预测方法》

6. 卡尔曼滤波的详细原理

卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。

数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用.

表达式
X(k)=A X(k-1)+B U(k)+W(k)

背景
斯坦利·施密特(Stanley Schmidt)首次实
现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。

定义
传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现.20世纪40年代,N.维纳和A.H.柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。这种方法要求信号和噪声都必须是以平稳过程为条件。60年代初,卡尔曼(R.E.Kalman)和布塞(R. S.Bucy)发表了一篇重要的论文《线性滤波和预测 理论的新成果》,提出了一种新的线性滤波和预测理由论,被称之为卡尔曼滤波。特点是在线性状态空间表示的基础上对有噪声的输入和观测信号进行处理,求取系统状态或真实信号。
这种理论是在时间域上来表述的,基本的概念是:在线性系统的状态空间表示基础上,从输出和输入观测数据求系统状态的最优估计。这里所说的系统状态,是总结系统所有过去的输入和扰动对系统的作用的最小参数的集合,知道了系统的状态就能够与未来的输入与系统的扰动一起确定系统的整个行为。
卡尔曼滤波不要求信号和噪声都是平稳过程的假设条件。对于每个时刻的系统扰动和观测误差(即噪声),只要对它们的统计性质作某些适当的假定,通过对含有噪声的观测信号进行处理,就能在平均的意义上,求得误差为最小的真实信号的估计值。因此,自从卡尔曼滤波理论问世以来,在通信系统、电力系统、航空航天、环境污染控制、工业控制、雷达信号处理等许多部门都得到了应用,取得了许多成功应用的成果。例如在图像处理方面,应用卡尔曼滤波对由于某些噪声影响而造成模糊的图像进行复原。在对噪声作了某些统计性质的假定后,就可以用卡尔曼的算法以递推的方式从模糊图像中得到均方差最小的真实图像,使模糊的图像得到复原。

性质
①卡尔曼滤波是一个算法,它适用于线性、离散和有限维系统。每一个有外部变量的自回归移动平均系统(ARMAX)或可用有理传递函数表示的系统都可以转换成用状态空间表示的系统,从而能用卡尔曼滤波进行计算。
②任何一组观测数据都无助于消除x(t)的确定性。增益K(t)也同样地与观测数据无关。
③当观测数据和状态联合服从高斯分布时用卡尔曼递归公式计算得到的是高斯随机变量的条件均值和条件方差,从而卡尔曼滤波公式给出了计算状态的条件概率密度的更新过程线性最小方差估计,也就是最小方差估计。

形式
卡尔曼滤波已经有很多不同的实现,卡尔曼最初提出的形式一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

实例
卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列中预测出物体的坐标位置及速度。在很多工程应用(雷达、计算机视觉)中都可以找到它的身影。同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题。

应用
比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

扩展卡尔曼滤波(EXTEND KALMAN FILTER, EKF)
是由kalman filter考虑时间非线性的动态系统,常应用于目标跟踪系统。

状态估计
状态估计是卡尔曼滤波的重要组成部分。一般来说,根据观测数据对随机量进行定量推断就是估计问题,特别是对动态行为的状态估计,它能实现实时运行状态的估计和预测功能。比如对飞行器状态估计。状态估计对于了解和控制一个系统具有重要意义,所应用的方法属于统计学中的估计理论。最常用的是最小二乘估计,线性最小方差估计、最小方差估计、递推最小二乘估计等。其他如风险准则的贝叶斯估计、最大似然估计、随机逼近等方法也都有应用。

状态量
受噪声干扰的状态量是个随机量,不可能测得精确值,但可对它进行一系列观测,并依据一组观测值,按某种统计观点对它进行估计。使估计值尽可能准确地接近真实值,这就是最优估计。真实值与估计值之差称为估计误差。若估计值的数学期望与真实值相等,这种估计称为无偏估计。卡尔曼提出的递推最优估计理论,采用状态空间描述法,在算法采用递推形式,卡尔曼滤波能处理多维和非平稳的随机过程。

理论
卡尔曼滤波理论的提出,克服了威纳滤波理论的局限性使其在工程上得到了广泛的应用,尤其在控制、制导、导航、通讯等现代工程方面。

7. mean-shift配合卡尔曼滤波的目标跟踪方法中的观测值如何选取

观测值是通过X(k-1)通过meanshift得到的

8. 基于卡尔曼滤波的目标跟踪怎么做

在cnki上下篇kalman目标跟踪的硕士论文吧,很多的,当然期刊也可以,不过一般情况下硕士论文讲的能详细点,然后找准一篇仔细研读,这样子基本上理论就没啥问题了,编程就用MATLAB,用C很麻烦,很多算法都没有得自己从头编,matlab集成了很多的算法的,只要找出来调用就行了。

这里给你说下kalman跟踪的思路吧:

0.如果你的视频是实际录得话,为防止检测到伪目标,首先要对输入的图像进行滤波,简单的有中值均值滤波。

1.对视频序列采用背景差分或帧间差分就可以得到运动区域了,这里重点就是背景建模,如果嫌麻烦也就别看什么单高斯或多高斯的了,直接找一个空帧(没有运动目标)当背景就OK了,差分后就有了运动区域,然后二值化方便以后的处理。然后视有没有阴影而进行阴影去除的工作。

2.上边这步也就是检测出了运动区域,按你的检测出来是要给边边画圈,这个在matlab上好好研究研究怎样提取目标边缘的点,在原位图图上把边缘的点改变成一个同像素值就行了,这样检测就完了。

3.跟踪,首先得找到目标的中心,因为目标不只是一个像素,必须有一个中心来表示它的坐标位置,这个方法自己想啦,什么取均值求外接矩形中心啊都可以的,然后每一帧都这么做就有一系列的中心坐标了。

4.Kalman,Kalman的作用还是以滤波为主,相当于把第三步的那些坐标都当成信号序列,用Kalman滤波,边检测边滤波,kalman主要记住那5个公式,知道它的递推过程就基本能编出来了,至于滤波器参数就在参考文献里找吧,编出来kalman部分的程序没多少行的,别怕。

5.如果是多目标跟踪的话就进行目标匹配的工作,相当于每帧都检测出两个目标,你要知道最新一帧中的每个分别对应的是前边帧的哪个目标。

上边这些给你一个大体的思路,你根据自己的任务选择做哪些工作,这个题目不难的,要有信心

9. 什么叫卡尔曼滤波算法其序贯算法

卡尔曼滤波算法(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
序贯算法又叫序贯相似性检测算法,是指图像匹配技术是根据已知的图像模块(模板图)在另一幅图像(搜索图)中寻找相应或相近模块的过程,它是计算机视觉和模式识别中的基本手段。已在卫星遥感、空间飞行器的自动导航、机器人视觉、气象云图分析及医学x射线图片处理等许多领域中得到了广泛的应用。研究表明,图像匹配的速度主要取决于匹配算法的搜索策略。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。

阅读全文

与卡尔曼滤波跟踪算法相关的资料

热点内容
柯洁在哪个app下围棋 浏览:749
平板用什么app看内在美 浏览:607
cad计算机命令 浏览:171
邮箱设置域名服务器错误什么意思 浏览:671
硬盘解压失败受损蓝屏 浏览:654
应用和服务器是什么意思 浏览:485
程序员需要知道的网站 浏览:713
微信支付页面加密码怎么加 浏览:57
网络加密狗问题 浏览:698
cnc曲面编程实例 浏览:170
什么app零粉分发视频有收益 浏览:164
肯尼亚程序员 浏览:640
新科源码 浏览:661
如何判断服务器有没有带宽 浏览:44
天正建筑批量删除命令 浏览:96
cad最下面的一排命令都什么意思 浏览:456
pythonimportcpp 浏览:852
W10的系统怎么给U盘加密 浏览:372
华为手机代码编程教学入门 浏览:764
和彩云没会员怎样解压 浏览:636