1. 常见的大数据分析工具有哪些
大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash
2. 大数据分析平台哪个好
大数据分析平台有很多,好的有以下几个:3. 常用的大数据分析软件有哪些
数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
4. 大数据分析系统平台方案有哪些
大数据分析系统平台方案有很多,其中就有广州思迈特软件Smartbi的大数据分析系统平台方案。大数据分析系统平台方案深度洞察用户数据,帮企业用数据驱动产品改进及运营监控,思迈特软件Smartbi是企业级商业智能和大数据分析品牌,经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。5. 目前国内有哪些好用的大数据分析平台
大数据分析平台有思迈特软件Smartbi:思迈特软件Smartbi是企业级商业智能和大数据分析品牌,经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。6. 大数据技术平台有哪些
java:只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰溜溜的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接收方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
7. 大数据平台的软件有哪些
一、Phoenix
简介:这是一个Java中间层,可以让开发者在Apache HBase上执行SQL查询。Phoenix完全使用Java编写,代码位于GitHub上,并且提供了一个客户端可嵌入的JDBC驱动。
Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排执行以生成标准的JDBC结果集。直接使用HBase API、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒
二、Stinger
简介:原叫Tez,下一代Hive,Hortonworks主导开发,运行在YARN上的DAG计算框架。
某些测试下,Stinger能提升10倍左右的性能,同时会让Hive支持更多的SQL,其主要优点包括:
❶让用户在Hadoop获得更多的查询匹配。其中包括类似OVER的字句分析功能,支持WHERE查询,让Hive的样式系统更符合SQL模型。
❷优化了Hive请求执行计划,优化后请求时间减少90%。改动了Hive执行引擎,增加单Hive任务的被秒处理记录数。
❸在Hive社区中引入了新的列式文件格式(如ORC文件),提供一种更现代、高效和高性能的方式来储存Hive数据。
三、Presto
简介:Facebook开源的数据查询引擎Presto ,可对250PB以上的数据进行快速地交互式分析。该项目始于 2012 年秋季开始开发,目前该项目已经在超过 1000 名 Facebook 雇员中使用,运行超过 30000 个查询,每日数据在 1PB 级别。Facebook 称 Presto 的性能比诸如 Hive 和 Map*Rece 要好上 10 倍有多。
Presto 当前支持 ANSI SQL 的大多数特效,包括联合查询、左右联接、子查询以及一些聚合和计算函数;支持近似截然不同的计数(DISTINCT COUNT)等。
8. 有哪些好用的大数据采集平台
1.数据超市
一款基于云平台的大数据计算、分析系统。拥有丰富高质量的数据资源,通过自身渠道资源获取了百余款拥有版权的大数据资源,所有数据都经过审核,保证数据的高可用性。
2. Rapid Miner
数据科学软件平台,为数据准备、机器学习、深度学习、文本挖掘和预测分析提供一种集成环境。
3. Oracle Data Mining
它是Oracle高级分析数据库的代表。市场领先的公司用它最大限度地发掘数据的潜力,做出准确的预测。
4. IBM SPSS Modeler
适合大规模项目。在这个建模器中,文本分析及其最先进的可视化界面极具价值。它有助于生成数据挖掘算法,基本上不需要编程。
5. KNIME
开源数据分析平台。你可以迅速在其中部署、扩展和熟悉数据。
6. Python
一种免费的开源语言。
关于有哪些好用的大数据采集平台,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
9. 大数据分析平台和工具有哪些
①Disco
Disco最初由诺基亚开发,这是一种分布式计算框架,与Hadoop一样,它也基于MapRece。它包括一种分布式文件系统以及支持数十亿个键和值的数据库。
支持的操作系统:Linux和OSX。
②HPCC
作为Hadoop之外的一种选择,HPCC这种大数据平台承诺速度非常快,扩展性超强。除了免费社区版外,HPCCSystems还提供收费的企业版、收费模块、培训、咨询及其他服务。
支持的操作系统:Linux。
③Lumify
Lumify归Altamira科技公司(以国家安全技术而闻名)所有,这是一种开源大数据整合、分析和可视化平台。你只要在Try.Lumify.io试一下演示版,就能看看它的实际效果。
支持的操作系统:Linux。
④Pandas
Pandas项目包括基于Python编程语言的数据结构和数据分析工具。它让企业组织可以将Python用作R之外的一种选择,用于大数据分析项目。
支持的操作系统:Windows、Linux和OSX。
⑤Storm
Storm现在是一个Apache项目,它提供了实时处理大数据的功能(不像Hadoop只提供批任务处理)。其用户包括推特、美国天气频道、WebMD、阿里巴巴、Yelp、雅虎日本、Spotify、Group、Flipboard及其他许多公司。
支持的操作系统:Linux。