㈠ 有哪些GIS+JavaScript的开发经验值得分享
python之于GIS与python之于IT类似 GISer采用python的原因也在于“人生苦短,我用python” python在gis中的应用非常之广 1. desktop GIS: ArcGIS从版本10开始不再支持原来的VBA,而改用python QGIS本身大部分的代码特别是插件部分可以采用python进行开发 2. 地图引擎 mapnik—基于C++引擎的顶级地图引擎库,和python结合比较紧密 mapfish—支持部分专题地图在线制作 3. webgis python+geodjango 是最常用也最庞大的后台框架 GISer使用python一定要充分发挥python语言的特性 如ArcGIS集成phthon是利用了python的脚本语言特性 后台webgis等服务,可以发挥python作为语言黏合剂的特性,充分利用已有的GIS算法库
㈡ VC++基于GDAL创建JPEG、JPEG2000文件出错
JPEG的压缩其实是四层压缩和恢复技术,我之前有在Linux下写过自制API完成JPEG的打开的部分模块,这个我还是相对了解的~
这个不是什么傅里叶,其实是离散余玄变换和小波变换编码(DCT和DWT)
这个JPEG2000需要四重掩码重构图像才能完成。JPEG是有损压缩,利用了人眼系统的视觉特性。我给你说说算法吧~~
1、DCT,将图像从空间域变为频率域
2、加权DCT量化处理
3、可变长编码
完成编码。
JPEG2000貌似有无损方式,但是哈夫曼编码或者算数编码很复杂,而且需要会预测,我记得有8种预测方式,
貌似是这样的:
选择: 预测:
0 无
1 P1
2 P2
3 P3
4 P1+P3-P2
5 P1+(P3-P2)/2
6 P3+(P1-P2)/2
7 (P1+P3)/2
㈢ 如何导入PostgreSQL数据库数据
说起数据库,大家耳熟能详的商业数据库产品当推Oracle、微软的SqlServer和IBM的
DB2等,而开源数据库中则有两大产品MySQL和PostgreSQL。
PostgreSQL 是一种对象-关系型数据库管理系统(ORDBMS),也是目前功能最强大、
特性最丰富和最复杂的自由软件数据库系统。它起源于伯克利(BSD)的数据库研究计划,
目前是最重要的开源数据库产品开发项目之一,有着非常广泛的用户。
PostgreSQL 可以说是最富特色的自由数据库管理系统,也有人认为可以是最强大的自由
软件数据库管理系统。PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完
整性检查等特性的唯一的一种自由软件的数据库管理系统。能在多平台下---包括Linux、
FreeBSD和Windows等---运行,并且支持多语言的开发。
在两大开源数据库产品的对比中,一般认为MySQL速度更快,所以得到更为广泛的使
用;而PostgreSQL性能更为先进,PostgreSQL 提供很多 MySQL 目前所不支持的特性,比
如触发器、视图、存储过程等等,在记录数超千万之后性能表现尤其出色。
当前的最新版本是PostgreSQL 8.2.3,官方网站是:
www.postgresql.org
1.2 什么是PostGIS
PostGIS在对象关系型数据库PostgreSQL上增加了存储管理空间数据的能力,相当于
Oracle的spatial部分。PostGIS最大的特点是符合并且实现了OpenGIS的一些规范,是最着
名的开源GIS数据库。
当前的最新版本是PostGIS 1.2.1,官方网站是:
www.postgis.org
二 PostgreSQL和PostGIS的安装
2.1 在windows下安装。
新版本的PostgreSQL在其安装程序中集成了PostGIS,只需要在安装过程中选中
PostGIS和pgsql项就可以了。
2.2 在Debian下安装PostGIS
# apt-get install postgresql-8.1 postgresql-8.1-postgis
当前Etch中的版本:PostgreSQL是8.1.7,而PostGIS是1.1.6,虽然不是最新的版本,
但已经足够了。
还需要做的工作是:
1) 创建一个专门用于PostGIS的数据库并为专用数据库导入PostGIS支持:
# su – postgres
$ cd /usr/share/postgresql-8.1-postgis
$ createdb wen1
$ createlang plpgsql wen1
$ psql -d wen1 -f lwpostgis.sql
$ psql -d wen1 -f spatial_ref_sys.sql
2) 创建一个专门的用户,并把相应的数据库和数据表的属主设置为该用户:
# su – postgres
$ psql
$ create user wen1 password ‘123456’;
$ alter database wen1 owner to wen1;
$ alter table spatial_ref_sys owner to wen1;
$ alter table geometry_columns owner to wen1 ;
3) 修改PostgreSQL配置文件以便可以远程使用。
修改PostgreSQL的配置文件/etc/postgresql/8.1/main/Postgresql.conf,将其中的一句:
listen_address=’localhost’
前面的注释去掉,并把’localhost’该为’*’。
修改Postgresql的配置文件/etc/postgresql/8.1/main/pg_hba.conf,在文件后面加一句:
host all all 192.168.0.0/24 password
这句的意思是:同网络中192.168.0.*的机器可以以密码的形式使用所有的数据库。更具
体的参数意义直接看该配置文件中的注释就可以了。
这里一定要配置正确,否则无法在远程连接PostgreSQL数据库。
2.3 源码安装PostgreSQL和PostGIS
参阅以前写的老文章。
三 PostGIS的使用
要使用PostGIS,需要两方面的预备知识,一是要熟悉基本的SQL语法;二是熟悉
PostgreSQL数据库的基本使用。
(一) 快速入门
我们使用前面创建的数据库wen2,用户为wen1,现在创建一个包含三个点的数据库
test1:
首先在Etch下以wen1登陆,然后打开wen2数据库:
$ psql -d wen2 ;
再在PostgreSQL的控制台下输入以下命令:
wen2=> create table test1 (myID int4, pt geometry, myName
varchar );
wen2=> insert into test1 values (1, 'POINT(0 0)', 'beijing'
);
wen2=> insert into test1 values (2, 'POINT(31.5 60.87)',
'shanghai' );
wen2=> insert into test1 values (3, 'POINT(10.77 85.902)',
'tianjin' );
这样我们利用PostGIS创建了一个包含三个点的GIS数据表。
为了能在QGIS中打开这一图层,我们还需要为数据表创建一个主键:
wen2=>alter table test1 add primary key (myID);
可以看到PostGIS的使用其实就相当于使用一个经过扩展的SQL语法,上述语句熟悉
SQL语法的人一看都很熟悉,都是普通的SQL语句,不同的只不过是增加了PostGIS特殊的
geometry数据类型。
你可以再试试这些SQL语句:
select * from test1;
select myID,AsText(pt) from test1;
select Distance(pt, 'POINT(0 0)') from test1;
(二) PostGIS的Geometry数据类型
Geometry可以说是PostGIS最重要的一个概念,是“几何体”的意思,由于PostGIS很
好地遵守OGC的”Simple Feature for Specification for
SQL”规范,目前支持的几何体类型包
含其实例有:
POINT(1 1)
MULTIPOINT(1 1, 3 4, -1 3)
LINESTRING(1 1, 2 2, 3 4)
POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))
MULTIPOLYGON((0 0, 0 1, 1 1, 1 0, 0 0), (5 5, 5 6, 6 6, 6 5, 5
5))
MULTILINESTRING((1 1, 2 2, 3 4),(2 2, 3 3, 4 5))
而geometry具体表现又有两种形式,一种叫做WKT(Well Known Text)形式,如上面的
例子。或者使用如下SQL语句浏览:
select AsText(pt) from test1;
另一种叫做“Canonical Form”形式,看上去是一串古怪的数字,其实是一种增强的十六
进制编码,使用如下SQL语句就可以浏览了:
select pt from test1;
(三) 读写PostGIS数据
建设好PostGIS数据库之后,我们现在需要进行读写GIS数据了,包括把GIS写入到
PostGIS数据库中以及在应用程序中使用PostGIS数据库的数据。读写PostGIS目前主要有以
下四种方式:
3.1 使用psql语言
Psql语言是PostgreSQL内嵌的一个命令行工具,其语法基本上和标准的SQL语法是一
致的,可以使用Psql工具,结合标准SQL语法和一些PostGIS的扩展对PostGIS数据库进行
读写操作。
具体例子如上面“快速入门”中的例子。
这种方式功能强大,但全部需要手工操作,烦琐且繁重。
3.2 使用一些小工具
有两个很有用的小的转换工具,一是shp2pg;一是ogr2ogr
3.2.1 shp2pgsql和pgsql2shp
shp2pgsql和pgsql2shp是PostGIS自身携带的一对在Shape文件和PostGIS数据库之间进
行转换的工具,在Debian中安装好PostGIS之后,这两个程序已经位于可执行文件的搜索路
径上,因此可以在系统中任何位置使用。
假如当前目录下有完整的china.shp文件(应该有三个同名不同扩展名的文件),需要把其
中数据输入到上述的wen2数据库中的数据表china_postgis中,具体操作为(操作用户为
wen1):
$ shp2pgsql china china_postgis > tmp.sql
$ psql -d wen2 -f roads.sql
这个工具很好用,缺点在于使用范围有限,只针对Shape文件格式。
3.2.2 ogr2ogr
PostGIS本身的shp2pg工具只把shape文件转换到PostGIS 数据库中,那如何把其他的
GIS数据加入呢?比如说MapInfo的mid格式,ESRI的e00格式呢?这就要使用ogr这个工
具了。
Ogr目前是gdal的一个组成部分,那什么是gdal呢?其官方主页(http://www.gdal.org)上
如此介绍:
GDAL is a translator library for raster geospatial data formats
that is released under an X/MIT
style Open Source license by the Open Source Geospatial
Foundation. As a library, it presents a
single abstract data model to the calling application for all
supported formats. It also comes with a
variety of useful commandline utilties for data translation and
processing.
简单地说,Gdal是一个各种Gis数据格式的转换软件库,ogr则是转换矢量GIS数据的
软件库。
目前ogr能够支持的数据格式包括:
Arc/Info Binary Coverage、DWG、ESRI Personal
GeoDatabase、ArcSDE、ESRI
Shapefile、GML、GRASS、Mapinfo File、Microstation DGN、ODBC、Oracle
Spatial和
PostgreSQL等。应该说,这就基本包括了我们平常用到的所有矢量型GIS文件格式了。
Gdal支持的栅格数据格式参阅http: //www.gdal.org/formats_list.html
下面我们从源码编译安装gdal---因为我在Debian下使用apt方式安装的gdal并不支持
postgresql数据库,其实更为简便的方法也许是去gdal.org下载一个Fwtools的工具包,可以
直接运行不用繁琐的编译,既有Windows的,也有Linux下用的,只不过这个包有些大。
1) 下载最新的gdal-1.3.2
2) 解压
3) ./configure --prefix=/opt/gdal
--with-pg=/opt/pg/bin/pg_config --without-ogdi
这里我习惯把软件安装在/opt目录下。
--with-pg参数很重要,使ogr可以支持PostGIS,后面的参数是我的PostGIS安装的地方。
我在这里编译很多次失败,经过仔细查找,发现问题出在ogdi上,所以暂时我只好使
它不支持ogdi。
4) make
5) make install
下面是使用过程,假设现在我要把一个rai.mid文件导入到数据库data1中:
$ ogr2ogr –f Postgresql PG:dbname=data1 rai.mid
注意,f参数后面跟的是导入的数据类型,最后那个文件才是要导出的文件。PG后面说
明的是数据库的名字,需要是已经创建好的数据库,而数据表则由程序自动创建。还要特别
注意权限问题,以上命令我是由postgres用户执行的。
还有一个要注意的是主键问题。一般情况下,你使用shp2pg或者 ogr2ogr向postgis中
增加了Gis数据后,在GIS客户端添加postgis图层的时候,常常会因为数据表没有定义主键
而出错,解决的办法是,在服务器上使用psql或者其他sql工具,使用命令:
alter table table_name add primary key (column_name);
另外我们发现ogr竟然是不支持最常见的GIS格式e00格式,好象是因为版权方面的原
因吧。解决的方法就是去sf.net查找相关工具。我在上面就找到一个e002pg工具,支持将
e00文件导入到postGIS数据库中。
3.3 在其他GIS软件中读写PostGIS数据
比如在QGIS中,能够打开PostGIS图层,还有SPIT插件可以把Shape文件输入到
PostGIS数据库中。
其他GIS软件如uDig,Grass等,甚至连ArcInfo都支持或部分支持读写PostGIS数据。
3.4 利用接口在应用程序中读写PostGIS数据
广大的开源GIS程序员几乎为每一种程序设计语言设计好了读写PostGIS的接口,如利
用PostgreSQL的JDBC库,可以使用Java语言在程序中读写PostGIS数据;利用libpq库,
可以使用C语言读写PostGIS数据。
(四) 使用PostGIS函数
4.1 PostGIS函数
要能熟练使用PostGIS,掌握PostGIS的所有函数是关键。通过掌握这些PostGIS函数,
我们能够高效、稳定地处理各种地理数据。由于PostGIS的函数设计时都遵守OpenGIS规范,
我们也可以把这些PostGIS叫做OpenGIS函数。
4.2 PostGIS函数的分类
PostGIS函数大致可以分为以下四类
1) 字段处理函数
这类函数当前一共有3个,分别是:
AddGeometryColumn(var1,var2,var3,var4,var5,var6):为已有的数据表增加一个地理几何
数据字段。Var1代表数据表的模式(schema)的名字,一般是public,也可以省略,则使用当
前的缺省模式;var2是已有的数据表的名字;var3是新的地理数据字段的名字;var4是
SRID值,不确定的话就取-1吧;var5是地理数据的类型,可以是POINT等;var6是指该几
何数据是二维还是三维数据。
前面的SQL语句 create table test1 (myID int4, pt geometry, myName
varchar )更规范的写
法为:
create table test1 (myID int4, myName varchar );
select AddGeometryColumn('test1','pt',-1,'GEOMETRY',2);
DropGeometryColumn函数显然是删除一个地理数据字段的;
SetSRID函数显然是设置SRID值的。
2) 几何关系函数
这类函数目前共有10个,分别是:
Distance Equals Disjoint Intersects Touches Crosses Within
Overlaps Contains Relate
3) 几何分析函数
这类函数目前共有12个,分别是:Centroid Area Lenth PointOnSurface Boundary
Buffer
ConvexHull Intersection SymDifference Difference GeomUnion
MemGeomUnion
4) 读写函数
这类函数很多,主要是用于在各种数据类型之间的转换,尤其是在于Geometry数据类
型与其他如字符型等数据类型之间的转换,函数名如AsText、GeomFromText等,其作用是
显然的。
4.3 PostGIS函数使用示例。
假设在我们的wen2数据库中,有两张表,一张为guojia,是从“国家基础地理数据”
网站下载的国界数据表,数据类型为LINE;二为shengqu_polygon,也从同一个网站下载,
地理数据类型为多边形。
1) 查询我国边境线的长度:
wen1=> select sum(length(the_geom)) as lenth from guojie;
2) 查询我国面积最大的省区名字:
wen1=> select name area(the_geom) as myarea
from shengqu_polygon
order by myarea DESC
LIMIT 1;
(五) 使用PostGIS扩展函数
除了上述遵循OpenGIS的函数之外,PostGIS还自行扩展了一些当前OpenGIS规范之外
的函数,主要包括以下几类:
5.1 管理类函数
扩展的管理类函数主要包括一些软件版本查询函数,如
postgis_version()、postgis_geos_version()、postgis_proj_version()函数等,分别查询当前的
PostGIS的版本及其使用的Geos和Proj库的版本。
5.2 数据类型的输入输出函数
除了OpenGIS定义的地理数据类型之外,PostGIS还对数据类型进行了扩展,这种扩展
主要是两方面的扩展,一是把二维的数据向三维和四维扩展;二就是在WKT和WKB数据
类型基础上扩展出EWKT和EWKB数据类型。
PostGIS提供了在这些地理数据类型和常用数据类型如字符型、浮点型数据之间进行转
换的函数。
5.3 量算函数
如length3d函数是对length2d函数的扩展。
5.4 几何操作函数
如addBBox(geometry)函数给所给的几何体加上一个边框。
如simplify(geometry,tolerance)函数可以对折线和多边形利用Douglas-Peuker算法进行一
些节点进行删除,从而使表现的图形更简单而清晰,在网络传输数据时具有更高的效率。
5.5 操作符号
5.6 其他扩展函数
(六) 建立PostGIS索引
当数据库的记录增大的时候,如果没有建立索引的话,操作的效率就显着下降。
POstGIS建议当记录数超过几千的时候就应该建立索引,而GIS数据库一般都是海量数据,
所以对PostGIS而言,索引就非常重要。
Shapfile文件为ESRI公司的文件存储格式,并且得到了业界广泛的支持。Shapfile格式是一种简单的,用非拓朴关系的形式存储几何位置和地
理特征的属性信息的格式。虽然GeoServer采用Shapfile文件可以快速的创建网上地图服务,但它的缺点确很明显:
1、Shapefile只支持一个图层,在实际中没有意义。
2、直接保用SHP文件不安全,Shapfile文件很容易被病毒或其他原因误删除。
3、GeoServer中用Shapfile文件作数据源的效率是很低的。
4、Shapfile中的汉字GeoServer不能解析,会出现乱码。
5、数据库可以方便的对地理信息进行查询。
用PostGIS管理空间数据
PostGIS支持GIST空间索引(附录1)、规范窗体,能很大的提高处理效率。
OGC格式只提供二维的几何体,且相关联的SRID从未深入的用于输入输出请求,PostGIS支持OpenGIS组织"Simple
Features for
SQL"规范指定的所有GIS对象和函数,并进行了扩展,格式是EWKB、EWKT,其中增加了对3DZ,3DM和4D
坐标系的支持(当然三维、四维数据的OGC标准还未完全制定),深入引进了SRID信息。
空间数据表结构:PostGIS中存在两个必需的元数据表格, SPATIAL_REF_SYS(空间参考表格) 和
GEOMETRY_COLUMNS(几何体属性列),两个表用于存储空间数据库使用的坐标系统数字ID和文本描述。
PostGIS的shp2pgsql命令可以将Shapfile直接导入到数据库中也可以导出为SQL文件,推荐先导出为SQL文件再将此文件在SQL运行窗口中执行可将数据导入数据库。
Shapfile到SQL语句:
shp2pgsql 路径shp数据文件名 新建的数据表名 >
路径SQL文件名.sql
Shapfile直接入库:
shp2pgsql -c 路径shp数据文件名 新建的数据表名 数据库名|psql -d 数据库名
举例说明:
如将一Shapfile文件“c:road.shp”导入到数据表“road”中,数据库为“sjzmap”。
1、运行“命令提示符”。
2、切换至PostgreSQL数据库安装目录中的bin目录下。
3、执行此目录下的shp2pgsql命令:“shp2pgsql c:road.shp road >
c:road.sql”。
4、如将此文件直接导入数据库(不推荐):“shp2pgsql -c c:road.shp road
sjzmap | psql -d sjzmap”。
5、使用pgAdmin3
选择数据库,再导入表。
㈣ 急求一个完整的c语言图像置乱加密算法!!!
#include"windows.h"
#include"stdio.h"
#include"string.h"
#include"malloc.h"
unsignedchar*pBmpBuf;//读入图像数据的指针
unsignedchar*pEnBmpBuf;//加密图像数据的指针
unsignedchar*pUnBmpBuf;//解密图像数据的指针
charkey=255;//密钥
intbmpWidth;//图像的宽
intbmpHeight;//图像的高
RGBQUAD*pColorTable;//颜色表指针
intbiBitCount;//图像类型,每像素位数
boolreadBmp(char*bmpName)
{
//二进制读方式打开指定的图像文件
FILE*fp=fopen(bmpName,"rb");
if(fp==0)return0;
//跳过位图文件头结构BITMAPFILEHEADER
fseek(fp,sizeof(BITMAPFILEHEADER),0);
//定义位图信息头结构变量,读取位图信息头进内存,存放在变量head中
BITMAPINFOHEADERhead;
fread(&head,sizeof(BITMAPINFOHEADER),1,fp);
//获取图像宽、高、每像素所占位数等信息
bmpWidth=head.biWidth;
bmpHeight=head.biHeight;
biBitCount=head.biBitCount;
//定义变量,计算图像每行像素所占的字节数(必须是4的倍数)
intlineByte=(bmpWidth*biBitCount/8+3)/4*4;
//灰度图像有颜色表,且颜色表表项为256
if(biBitCount==8){
//申请颜色表所需要的空间,读颜色表进内存
pColorTable=newRGBQUAD[256];
fread(pColorTable,sizeof(RGBQUAD),256,fp);
}
//申请位图数据所需要的空间,读位图数据进内存
pBmpBuf=newunsignedchar[lineByte*bmpHeight];
fread(pBmpBuf,1,lineByte*bmpHeight,fp);
//关闭文件
fclose(fp);
return1;
}
voidencrypt(chark)
{
//加密,奇数位置的像素使用位运算加密,偶数位置像素为原始值
intlineByte=(bmpWidth*biBitCount/8+3)/4*4;
pEnBmpBuf=newunsignedchar[lineByte*bmpHeight];
for(inti=0;i<lineByte*bmpHeight;i++)
{
if(i%2==0)
{
pEnBmpBuf[i]=pBmpBuf[i];
}
elsepEnBmpBuf[i]=pBmpBuf[i]^k;
}
}
voinencrypt(chark)
{
//解密
intlineByte=(bmpWidth*biBitCount/8+3)/4*4;
pUnBmpBuf=newunsignedchar[lineByte*bmpHeight];
for(inti=0;i<lineByte*bmpHeight;i++)
{
if(i%2==0)
{
pUnBmpBuf[i]=pEnBmpBuf[i];
}
elsepUnBmpBuf[i]=pEnBmpBuf[i]^k;
}
}
boolsaveBmp(char*bmpName,unsignedchar*imgBuf,intwidth,intheight,
intbiBitCount,RGBQUAD*pColorTable)
{
//如果位图数据指针为0,则没有数据传入,函数返回
if(!imgBuf)
{printf("error !");return0;}
//颜色表大小,以字节为单位,灰度图像颜色表为1024字节,彩色图像颜色表大小为0
intcolorTablesize=0;
if(biBitCount==8)
colorTablesize=1024;
//待存储图像数据每行字节数为4的倍数
intlineByte=(width*biBitCount/8+3)/4*4;
//以二进制写的方式打开文件
FILE*fp=fopen(bmpName,"wb");
if(fp==0)return0;
//申请位图文件头结构变量,填写文件头信息
BITMAPFILEHEADERfileHead;
fileHead.bfType=0x4D42;//bmp类型
//bfSize是图像文件4个组成部分之和
fileHead.bfSize=sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER)
+colorTablesize+lineByte*height;
fileHead.bfReserved1=0;
fileHead.bfReserved2=0;
//bfOffBits是图像文件前3个部分所需空间之和
fileHead.bfOffBits=54+colorTablesize;
//写文件头进文件
fwrite(&fileHead,sizeof(BITMAPFILEHEADER),1,fp);
//申请位图信息头结构变量,填写信息头信息
BITMAPINFOHEADERhead;
head.biBitCount=biBitCount;
head.biClrImportant=0;
head.biClrUsed=0;
head.biCompression=0;
head.biHeight=height;
head.biPlanes=1;
head.biSize=40;
head.biSizeImage=lineByte*height;
head.biWidth=width;
head.biXPelsPerMeter=0;
head.biYPelsPerMeter=0;
//写位图信息头进内存
fwrite(&head,sizeof(BITMAPINFOHEADER),1,fp);
//如果灰度图像,有颜色表,写入文件
if(biBitCount==8)
fwrite(pColorTable,sizeof(RGBQUAD),256,fp);
//写位图数据进文件
fwrite(imgBuf,height*lineByte,1,fp);
//关闭文件
fclose(fp);
return1;
}
voidmain()
{
charinFileName[90],outFileName1[90],outFileName2[90];
printf("请输入原始位图文件的文件名:");
scanf("%s",inFileName);
printf("请输入加密程序产生的新位图文件的文件名:");
scanf("%s",outFileName1);
printf("请输入解密程序产生的新位图文件的文件名:");
scanf("%s",outFileName2);
//读入指定BMP文件进内存
readBmp(inFileName);
//输出图像的信息
printf("width=%d,height=%d,biBitCount=%d ",bmpWidth,bmpHeight,biBitCount);
//图像加密
encrypt(key);
//将加密数据存盘
saveBmp(outFileName1,pEnBmpBuf,bmpWidth,bmpHeight,biBitCount,pColorTable);
//图像解密
unencrypt(key);
//将解密数据存盘
saveBmp(outFileName2,pUnBmpBuf,bmpWidth,bmpHeight,biBitCount,pColorTable);
//清除缓冲区,pBmpBuf和pColorTable是全局变量,在文件读入时申请的空间
delete[]pBmpBuf;
if(biBitCount==8)
delete[]pColorTable;
}
读取BMP,使用位运算加密,你也可以自己改
dem数据的话,一般用GDAL库读取,加密的思路是类似的,最简单方法是把奇数位和偶数位的高程值置换一下
㈤ C# GDAL 打开遥感影像图片
对于遥感来说,1W像素实在不算多。GDAL对你这个问题没有什么意义,因为GDAL是用来读写图像文件的,而你的问题是绘制。要绘制影像,以下几点要考虑到:1)如果只是显示局部影像,那么一定要先把这局部数据提取出来;2)如果要在窗口像素超出要显示的影像像素,那么要采用金字塔技术,根据像素多少判断该采用哪个金字塔层,建金字塔的技术有很多,比如最邻近法(最最简单的方法)、双线性插值法、立方卷积法等。最邻近法因为速度快,你在显示之前按照原理直接从基础影像中提取即可,其他方法最好要预先建立。
㈥ qt中利用gdal怎么提取遥感图像上的道路
从遥感影像上识别道路,这个有点难度,你可以参考遥感影像分类的相关算法,根据道路采样,提取道路……
㈦ JPEG2000可以无损压缩16位图像吗
JPEG的压缩其实是四层压缩和恢复技术,我之前有在Linux下写过自制API完成JPEG的打开的部分模块,这个我还是相对了解的~
这个不是什么傅里叶,其实是离散余玄变换和小波变换编码(DCT和DWT)
这个JPEG2000需要四重掩码重构图像才能完成。JPEG是有损压缩,利用了人眼系统的视觉特性。我给你说说算法吧~~
1、DCT,将图像从空间域变为频率域
2、加权DCT量化处理
3、可变长编码
完成编码。
JPEG2000貌似有无损方式,但是哈夫曼编码或者算数编码很复杂,而且需要会预测,我记得有8种预测方式,
貌似是这样的:
选择: 预测:
0 无
1 P1
2 P2
3 P3
4 P1+P3-P2
5 P1+(P3-P2)/2
6 P3+(P1-P2)/2
7 (P1+P3)/2
㈧ Cesium 生成 terrain 地形数据
cesium的terrain地形数据可以通过cesiumlab生成,可以把tif/dem格式的地形数据转成地形切片,支持ctb和vcg两种三角化算法,支持水面
㈨ gis图像处理
不知道你用 MO还是AE
你完全可以看帮助文件的
有详细的小例子