❶ 数学中关于e的运算法则
(1)ln e = 1
(2)ln e^x = x
(3)ln e^e = e
(4)e^(ln x) = x
(5)de^x/dx = e^x
(6)d ln x / dx = 1/x
(7)∫ e^x dx = e^x + c
(8)∫ xe^xdx = xe^x - e^x + c
(9)e^x = 1+x+x^2/2!+x^3/3!+x^4/4!+....
(10)d(e^x sinx)/dx = e^x sinx +e^xcosx=e^x(sinx+cosx)
(1)ex的对数运算法则扩展阅读:
自然常数e的由来:
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数着作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
❷ e∧x与lnx的转化公式
E∧x与lnx的转化公式:
x^(1/x)=e^ln(x^(1/x)) =e^((lnx)/x) 是对数公式
函数值的因变量与自变量的比 Δy/Δx=(y2-y1)/(x2-x1) 叫做函数 y=f(x) 从 x1 到 x2 之间的平均变化率.所以平均变化率k=(2-1)/(e^2-e)=1/(e^2-e)
由公式得来的 m^longm n=n相对地,此式中m=e 而自然对数longe=lnlongm=longe=ln。
第一个,令lnx=t则x=e^t e^lnx=e^t=x 第二个 x^x=e^(xlnx)http://wenwen.sogou.com/z/q655494158.htm
y=x(e^x-lnx) y'=(e^x-lnx)+x(e^x-1/x) =(1+x)e^x-lnx-1.
假设 e^a=x所以 x=e^aln(x)=ln (e^a) =a*ln(e) =a*1=a所以ln(x)=ae^(lnX)=e^(a)=x所以e^lnX等于X
y=e^x,x=lny,x与y互为逆运算.计算一般可使用科学计算器.供参考
只有两个公式:lne x=x e lnx=x 其实理解起来很容易的,e x=y 两边取对数:x=lny 把X带入前一个式子,把Y带入后一个式子.这是教材上的证明方法,也是最好的理解和记忆方法。
举例说明:
已知函数f(x)=e^x-lnx,则此函数f(X)的最小值必在区间:
A.(1/2,1) B.(1,2) C.(2,5/2) D.(5/2,3)
【解析】 求函数导数,f'(x)=e^x-1/x e^x=1/x时,f(x)取到最值.因为f'(x)在(0,正无穷)上单调增,f'(1/2)0,因此x取(1/2,1)内的某一个值时,f(x)取到最。
1、(e^-x -1)/(e^-x +1)=(1-e^x)/(1+e^x)等式左边分子分母同乘以e^x即可得到右式。
2、lnx 的值域为全体实数,乘了-(1/2)依然是全体实数,所以e^-(1/2)lnx的值域为(0,+无穷)。
❸ e与ln的转化公式
如图所示:
简单的说就是ln是以e为底的对数函数b=e^a等价于a=lnb。
自然对数以常数e为底数的对数。记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。若为了避免与基为10的常用对数lgx混淆,可用“全写”㏒ex。
常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
(3)ex的对数运算法则扩展阅读
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
❹ 对数运算的问题
对数运算法则:logM+logN = log(MN),
logM-logN = log(M/N)。
移项,右边=1+lnx-lna = lne+lnx-lna = ln(ex) - lna = ln(ex/a) 。
❺ 对数的公式都有哪些
以常用对数为例,公式有:
lg(ab)=lga+lgb
lg(a/b)=lga-lgb
lg(a^n)=nlga
10^(lga)=a
❻ 两个对数相除怎么算
如果两个对数的底数相同,则可以用换底公式,loga c/loga b=logb c。
a^log(a)(N)=N (a>0 ,a≠1)推导:log(a) (a^N)=N恒等式证明
在a>0且a≠1,N>0时
设:当log(a)(N)=t,满足(t∈R)
则有a^t=N;
a^(log(a)(N))=a^t=N;
证明完毕
(6)ex的对数运算法则扩展阅读:
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
(xlogax)'=logax+1/lna
其中,logax中的a为底数,x为真数
(logax)'=1/xlna
特殊的即a=e时有
(logex)'=(lnx)'=1/x
❼ 春季高考数学指数函数对数函数公式
指数函数和对数函数是数学函数教学课程中一个非常重要的内容,下面是我给大家带来的春季高考数学指数函数对数函数公式,希望对你有帮助。
高考数学指数函数对数函数公式
(1)定义域、值域
指数函数
应用到值 x 上的这个函数写为 exp(x)。还可以等价的写为 ex,这里的 e 是数学常数,就是自然对数的底数,近似等于 2.718281828,还叫做欧拉数。
一般形式为y=a^x(a>0且≠1) (x∈R);
定义域:x∈R,指代一切实数(-∞,+∞),就是R;
值域:对于一切指数函数y=a^x来讲。他的a满足a>0且a≠1,即说明y>0。所以值域为(0,+∞)。a=1时也可以,此时值域恒为1。
对数函数
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
(2)单调性
对于任意x1,x2∈D
若x1
若x1f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂
正分数指数幂的意义是
负分数指数幂的意义是
(2)对数的性质和运算法则
loga(MN)=logaM+logaN
logaMn=nlogaM(n∈R)
指数函数 对数函数
(1)y=ax(a>0,a≠1)叫指数函数
(2)x∈R,y>0
图象经过(0,1)
a>1时,x>0,y>1;x<0,0< p="">
0
a> 1时,y=ax是增函数
0
(2)x>0,y∈R
图象经过(1,0)
a>1时,x>1,y>0;0
0
a>1时,y=logax是增函数
0
指数方程和对数方程
基本型
logaf(x)=b f(x)=ab(a>0,a≠1)
同底型
logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)
❽ log怎么计算
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
计算方式:
根据2^3=8,可得log2 8=3。
(8)ex的对数运算法则扩展阅读:
推导公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
求导数
(xlogax)'=logax+1/lna
其中,logax中的a为底数,x为真数;
(logax)'=1/xlna
特殊的即a=e时有
(logex)'=(lnx)'=1/x[4]