导航:首页 > 源码编译 > knn算法与近邻分类算法的区别

knn算法与近邻分类算法的区别

发布时间:2022-09-04 10:55:13

㈠ knn是什么意思

作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。

在应用KNN算法解决问题的时候,要注意两个方面的问题——样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,featureweightedKNN)。实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。

(1)knn算法与近邻分类算法的区别扩展阅读:

KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路非常简单直观:

如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

㈡ 什么叫做knn算法

在模式识别领域中,最近邻居法(KNN算法,又译K-近邻算法)是一种用于分类和回归的非参数统计方法。

在这两种情况下,输入包含特征空间(Feature Space)中的k个最接近的训练样本。

1、在k-NN分类中,输出是一个分类族群。一个对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。若k=1,则该对象的类别直接由最近的一个节点赋予。

2、在k-NN回归中,输出是该对象的属性值。该值是其k个最近邻居的值的平均值。

最近邻居法采用向量空间模型来分类,概念为相同类别的案例,彼此的相似度高,而可以借由计算与已知类别案例之相似度,来评估未知类别案例可能的分类。

K-NN是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。k-近邻算法是所有的机器学习算法中最简单的之一。

无论是分类还是回归,衡量邻居的权重都非常有用,使较近邻居的权重比较远邻居的权重大。例如,一种常见的加权方案是给每个邻居权重赋值为1/ d,其中d是到邻居的距离。

邻居都取自一组已经正确分类(在回归的情况下,指属性值正确)的对象。虽然没要求明确的训练步骤,但这也可以当作是此算法的一个训练样本集。

k-近邻算法的缺点是对数据的局部结构非常敏感。

K-均值算法也是流行的机器学习技术,其名称和k-近邻算法相近,但两者没有关系。数据标准化可以大大提高该算法的准确性。

参数选择

如何选择一个最佳的K值取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的K值能通过各种启发式技术(见超参数优化)来获取。

噪声和非相关性特征的存在,或特征尺度与它们的重要性不一致会使K近邻算法的准确性严重降低。对于选取和缩放特征来改善分类已经作了很多研究。一个普遍的做法是利用进化算法优化功能扩展,还有一种较普遍的方法是利用训练样本的互信息进行选择特征。

在二元(两类)分类问题中,选取k为奇数有助于避免两个分类平票的情形。在此问题下,选取最佳经验k值的方法是自助法。

㈢ knn算法是什么

KNN(K- Nearest Neighbor)法即K最邻近法,最初由Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。

介绍

KNN算法本身简单有效,它是一种lazy-learning算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN的分类时间复杂度为O(n)。

KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

㈣ knn和kmeans的区别

knn属于监督学习,类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。kmeans属于非监督学习,事先不知道数据会分为几类,通过聚类分析将数据聚合成几个群体。

knn和kmeans的区别

1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类

2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合。

K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

Kmeans算法的缺陷

聚类中心的个数K 需要事先给定,但在实际中这个 K 值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适

Kmeans需要人为地确定初始聚类中心,不同的初始聚类中心可能导致完全不同的聚类结果。(可以使用Kmeans++算法来解决)

针对上述第2个缺陷,可以使用Kmeans++算法来解决

K-Means ++ 算法

k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。

从输入的数据点集合中随机选择一个点作为第一个聚类中心

对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)

选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大

重复2和3直到k个聚类中心被选出来

利用这k个初始的聚类中心来运行标准的k-means算法

从上面的算法描述上可以看到,算法的关键是第3步,如何将D(x)反映到点被选择的概率上,一种算法如下:

先从我们的数据库随机挑个随机点当“种子点”

对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。

然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。

重复2和3直到k个聚类中心被选出来

利用这k个初始的聚类中心来运行标准的k-means算法

㈤ 三种经典的数据挖掘算法

算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。
1.KNN算法
KNN算法的全名称叫做k-nearest neighbor classification,也就是K最近邻,简称为KNN算法,这种分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似,即特征空间中最邻近的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法常用于数据挖掘中的分类,起到了至关重要的作用。
2.Naive Bayes算法
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。这种算法在数据挖掘工作使用率还是挺高的,一名优秀的数据挖掘师一定懂得使用这一种算法。
3.CART算法
CART, 也就是Classification and Regression Trees。就是我们常见的分类与回归树,在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。这两个思想也就决定了这种算法的地位。
在这篇文章中我们给大家介绍了关于KNN算法、Naive Bayes算法、CART算法的相关知识,其实这三种算法在数据挖掘中占据着很高的地位,所以说如果要从事数据挖掘行业一定不能忽略这些算法的学习。

㈥ 什么是knn算法

作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。在应用KNN算法解决问题的时候,要注意两个方面的问题——样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,feature
weighted
KNN)。实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。

㈦ KNN算法,k近邻

K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

㈧ KNN 算法-理论篇-如何给电影进行分类

KNN 算法 的全称是 K-Nearest Neighbor ,中文为 K 近邻 算法,它是基于 距离 的一种算法,简单有效。

KNN 算法 即可用于分类问题,也可用于回归问题。

假如我们统计了一些 电影数据,包括电影名称,打斗次数,接吻次数,电影类型 ,如下:

可以看到,电影分成了两类,分别是动作片和爱情片。

如果现在有一部新的电影A,它的打斗和接吻次数分别是80 和7,那如何用KNN 算法对齐进行分类呢?

我们可以将打斗次数作为 X 轴 ,接吻次数作为 Y 轴 ,将上述电影数据画在一个坐标系中,如下:

通过上图可以直观的看出,动作电影与爱情电影的分布范围是不同的。

KNN 算法 基于距离,它的原理是: 选择与待分类数据最近的K 个点,这K 个点属于哪个分类最多,那么待分类数据就属于哪个分类

所以,要判断电影A 属于哪一类电影,就要从已知的电影样本中,选出距离电影A 最近的K 个点:

比如,我们从样本中选出三个点(即 K 为 3),那么距离电影A 最近的三个点是《功夫》,《黑客帝国》和《战狼》,而这三部电影都是动作电影。因此,可以判断电影A 也是动作电影。

另外,我们还要处理两个问题:

关于点之间的距离判断,可以参考文章 《计算机如何理解事物的相关性》 。

至于K 值的选择,K 值较大或者较小都会对模型的训练造成负面影响,K 值较小会造成 过拟合 ,K 值较大 欠拟合

因此,K 值的选择,一般采用 交叉验证 的方式。

交叉验证的思路是,把样本集中的大部分样本作为训练集,剩余部分用于预测,来验证分类模型的准确度。一般会把 K 值选取在较小范围内,逐一尝试K 的值,当模型准确度最高时,就是最合适的K 值。

可以总结出, KNN 算法 用于分类问题时,一般的步骤是:

如果,我们现在有一部电影B,知道该电影属于动作电影,并且知道该电影的接吻次数是 7 ,现在想预测该电影的打斗次数是多少?

这个问题就属于 回归问题

首先看下,根据已知数据,如何判断出距离电影B 最近的K 个点。

我们依然设置K 为3,已知数据为:

根据已知数据可以画出下图:

图中我画出了一条水平线,这条线代表所有接吻次数是7 的电影,接下来就是要找到距离 这条线 最近的三部(K 为 3)动作电影。

可以看到,距离这条水平线最近的三部动作电影是《功夫》,《黑客帝国》和《战狼》,那么这三部电影的打斗次数的平均值,就是我们预测的电影B 的打斗次数。

所以,电影B 的打斗次数是:

本篇文章主要介绍了 KNN 算法 的基本原理,它简单易懂,即可处理分类问题,又可处理回归问题。

KNN 算法 是基于 距离 的一种机器学习算法,需要计算测试点与样本点之间的距离。因此,当数据量大的时候,计算量就会非常庞大,需要大量的存储空间和计算时间。

另外,如果样本数据分类不均衡,比如有些分类的样本非常少,那么该类别的分类准确率就会很低。因此,在实际应用中,要特别注意这一点。

(本节完。)

推荐阅读:

决策树算法-理论篇-如何计算信息纯度

决策树算法-实战篇-鸢尾花及波士顿房价预测

朴素贝叶斯分类-理论篇-如何通过概率解决分类问题

朴素贝叶斯分类-实战篇-如何进行文本分类

计算机如何理解事物的相关性-文档的相似度判断

㈨ 常见的监督学习算法

K-近邻算法:K-近邻是一种分类算法,其思路是如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

ID3算法:划分数据集的最大原则就是将数据变得更加有序。熵(entropy)是描述信息不确定性(杂乱程度)的一个值。

(9)knn算法与近邻分类算法的区别扩展阅读:

注意事项:

分类:当数据被用于预测类别时,监督学习也可处理这类分类任务。给一张图片贴上猫或狗的标签就是这种情况。当分类标签只有两个时,这就是二元分类,超过两个则是多元分类。

预测:这是一个基于过去和现在的数据预测未来的过程,其最大应用是趋势分析。一个典型实例是根据今年和前年的销售业绩以预测下一年的销售业绩。

阅读全文

与knn算法与近邻分类算法的区别相关的资料

热点内容
新华三云服务器下载 浏览:695
虚空之遗服务器怎么样 浏览:21
战棋游戏下载的app叫什么 浏览:781
我的世界开不了服务器地址 浏览:8
为什么我的万能小组件app和别人不一样 浏览:872
linux查看运行日志 浏览:686
lte技术pdf 浏览:52
免密码支付源码 浏览:295
小跃程序员 浏览:768
程序员之路怎么设置 浏览:561
一台云服务器能建几个小程序 浏览:398
cad圆心阵列命令 浏览:677
加密卡必须要物业授权吗 浏览:632
修改wifi密码后无法加密 浏览:217
绿色的编程软件是什么 浏览:250
山寨加密比特币 浏览:736
程序员职业规划书怎么写 浏览:433
为数据而生pdf 浏览:55
幻想三国源码百度网盘 浏览:274
淘宝首页模块怎么进行源码切换 浏览:771