1. 智能循迹小车 有的跑道是中间一条黑线,有的两边是黑线,他们各自的原理是什么啊
寻迹小车一般都有光电引导头,他用的是物理学原理,黑色在物理的意思上是吸收一切光线(白色的意思是反射任何光线)。小车下面的引导头(有发射和接收两个头,一般是一体式的)会发射光线,当遇到白色物体时,光线被反射回来,然后接收头接收,输出高电平,这样小车就判断为白色。如果遇到的是黑线,则不会被反射,接收头无法接收到信号,输出低电平,小车就知道是黑色。后面就很简单了,小车上的引导头往往是并联多路,比如五路或者三路,只要让中间的引导头一直跟着黑线走,一直寻迹黑色就可以了。而最外边的两个不能碰到黑线就好。如果偏了,小车就用单片机程序调整一下电机的控制,让两侧电机加速或者减速,或者一加速一减速(转弯能力更强),小车就转弯,调整一下方向就好了。
2. 求循迹智能小车原理资料不胜感激。
通常循迹小车前方具有两只光电管,而循迹的原理是利用所谓印迹和道路的光线反差来实现控制。比方印迹为黑色,两只光电管全部照射在黑色印迹上面证明车辆循迹正常两个车轮同等转速。照射的左面光电管偏差出现照射到白色路面,则控制反馈令左面车轮加速,其作用相当于向右转。当两个光电管全部接收黑色信号,又回到两个车轮等速前进。右面光电管照射到白色路面,右面车轮加速,作用相当于向左转。通过两只光电管的反复不断修正实现循迹作用。假如想看书学习,近年的无线电杂志具有大量的资料。
3. 用labview编程智能循迹小车的程序思路
胶带的宽度一定的话:
四个传感器一字排列的情况最简单:
按1234号传感器命名,照在胶带上状态位为A,否则为a.
直线正常行走时,23号持续为A,14号持续为a.
分析开始右转的逻辑:
2号变a,继续直线行走,直到4号变A,根据24号间的距离和小车在这段时间内行驶的距离计算出转动角度(这就是动态平面几何问题了,自己画图解一下,注意转弯时候前后中心点的轨迹,胶带宽度是关键,得到的角度不会也不必太精确。这里我只讨论逻辑),然后以比计算结果稍大(目的是确保能让2恢复状态A)的转动角度开始转弯,等到2和3都恢复状态A,小车变回直线行走,等到2号重新变a,小车再恢复到原先的转动角度……后面一直循环就行了
直线上如果车子前进方向倾斜,和转弯一样,下面以车子向右倾斜为例分析:
会出现3号变a的情况,继续保持直线行走,直到1号变A,计算出小车在这个过程中行进距离,结合胶带宽度,1和3号间的距离,就可以算出偏离的角度然后决定转动角度。后面具体调整和过弯道一样。
然后我来吐槽为什么要用labview,你是想着拿着笔记本进行无线操控么 - -,嵌入式的labview编程现在还不成熟好吧~
4. 51单片机智能小车循迹问题
用个算法判断,十字路口的与重点的区别是什么?用代码判断,自己好好想想
5. 51智能小车寻迹路线,怎么编程让小车按原路返回
接循迹用的光电传感器,用单片机判断,驱动电机执行。传感器越多越好。
以比较奇葩的单路传感器为例,0驱动左轮,1驱动右轮,就可以沿黑线一侧摇摆前进。这么简单的判断都可以不用单片机,呵呵。
6. 各位 请详细解答一下光电对管循迹智能车拐弯时的算法
#include<reg52.h>
#define uchar unsigned char #define uint unsigned int
uchar a,i,time_count=0, count=0,Dutycycle0=50,Dutycycle1=50,flag; uchar state;
/***定义电机控制位***/
sbit INT11=P0^0; //电机控制位,左电机 左,芯片中的总开关 sbit INT22=P0^1; // 右电机控制位,高电平有效
sbit INT33=P0^2; //控制左电机,从而控制其中的车轮 sbit INT44=P0^3;
sbit funpwm0=P1^3; ///两个控制PWM的端口 sbit funpwm1=P1^4;
sbit IO4=P2^0; //ST188输出端口 sbit IO1=P2^1; sbit IO2=P2^2; sbit IO3=P2^3; sbit IO5=P0^7;
sfr CCON = 0xD8; // PCA控制寄存器 sbit CCF0 = CCON^0; // PCA模块0中断标志 sbit CCF1 = CCON^1; // PCA模块0中断标志 sbit CR = CCON^6; // PCA计数器阵列溢出标志位 sbit CF = CCON^7; // PCA计数器阵列运行控制位 sfr CMOD = 0xD9; // PCA工作模式寄存器 sfr CL = 0xE9; // PCA的16位计数器----低8位 sfr CH = 0xF9; // PCA的16位计数器----高8位 sfr CCAPM0 = 0xDA; // PCA模块0的输出脉冲频率 sfr CCAP0L = 0xEA; // PCA捕获、比较寄存器——低位字节 sfr CCAP0H = 0xFA; // PCA捕获、比较寄存器——高位字节 sfr CCAPM1 = 0xDB; // PCA模块1的输出脉冲频率 sfr CCAP1L = 0xEB; // 同上 sfr CCAP1H = 0xFB; // 同上 sfr PCAPWM0= 0xf2; // PCA模块0的PWM寄存器 sfr PCAPWM1= 0xf3; // PCA模块1的PWM寄存器
7. 智能小车循迹程序
电设小车循迹模块 转自:http://blog.sina.com.cn/s/blog_4bb018e10100ermy.html供参考://包含所需头文件
#include <ioM16v.h>
#include <macros.h>
#include"time1_init.h"
#include"motor.h"#define ahead 1
#define backwards 0
#define compare(x,y) (x<y?1:0)
#define mid 0X17//端口初始化
void port_init(void)
{
PORTA = 0x00;
DDRA = 0x00;
PORTB = 0x00;
DDRB = 0x08;
PORTC = 0x00;
DDRC = 0x00;
PORTD = 0x00;
DDRD = 0x00;
}void timer0_init(void)
{
TCCR0 = 0x00;//停止定时器
TCNT0 = 0x00;//初始值
OCR0 = 0x17;//匹配值
TIMSK |= 0x00;//中断允许
TCCR0 = 0x7D;//启动定时器
}void adc_init(void)
{
//adc转换初始化
ADCSRA = 0x00; //禁止AD转换
ADCSRA|=BIT(ADIF);
ADMUX=0X46;
SFIOR |= 0x00;
ACSR = 0x80; //禁止模拟比较器
ADCSRA = 0xE7;
}void init_devices(void)
{
CLI(); //禁止所有中断
MCUCR = 0x00;
MCUCSR = 0x80;//禁止JTAG
GICR = 0x00;
port_init();
timer0_init();
timer1_init();
adc_init();
SEI();//开全局中断
}uint sensor_head[3],sensor_back[3],cord; //存储6个传感器AD转换的值
uchar offset ; //黑线偏移小车中心轴的距离
uint sensor_compare_head[3]={300,300,300},sensor_compare_back[3]={300,300,300}; //判断黑线是否位于传感器下的阈值uchar start_head_sensor(void)
{
uchar i,j=0,sum=0;
ADMUX=0X40;
ADCSRA=0xC7;
while(ADCSRA&BIT(ADSC));
for(i=0;i<3;i++)
{
ADMUX=0X40+i; //启用前端传感器0,1,2通道
ADCSRA=0xC7;
while(ADCSRA&BIT(ADSC));
sensor_head[i]=ADC;
}
for(i=3;i;i--)
{
if(compare(sensor_head[i-1],sensor_compare_head[i-1]))
{
sum+=i-1;
j++;
}
}
if(j)
offset=sum*2/j;
ADMUX=0X46;
ADCSRA=0xE7;
return offset;
}
uchar start_back_sensor(void)
{
uchar i,j=0,sum=0;
ADMUX=0X43;
ADCSRA=0xC7;
while(ADCSRA&BIT(ADSC));
for(i=0;i<3;i++)
{
ADMUX=0X43+i; //启用前端传感器0,1,2通道
ADCSRA=0xC7;
while(ADCSRA&BIT(ADSC));
sensor_back[i]=ADC;
}
for(i=3;i;i--)
{
if(compare(sensor_back[i-1],sensor_compare_back[i-1]))
{
sum+=i-1;
j++;
}
}
if(j)offset=sum*2/j;
ADMUX=0X46;
ADCSRA=0XE7;
return offset;
}//角度传感器滤波函数
uint cord_sensor(void)
{
uchar i;
uint max=0,min=1023,sum=0;
for(i=0;i<5;i++)
{
ADCSRA|=BIT(ADIF);
while(!(ADCSRA&BIT(ADIF)));
cord=ADC;
sum+=cord;
max=(max>cord)?max:cord;
min=(min<cord)?min:cord;
}
return (sum-max-min)/3;
}void direc_ctrl(uchar x,uchar y)
{
if(y)
{
if(x==0)OCR0=mid+3;
if(x==4)OCR0=mid-3;
if(x==2) OCR0=mid;
}
else OCR0=mid+x-2;
}void menmber_path(void)
{
uchar j;
uint i;
uint max_head[3]={0,0,0},min_head[3]={1023,1023,1023},max_back[3]={0,0,0},min_back[3]={1023,1023,1023};
for(i=4000;i;i--)
{
start_head_sensor();
for(j=0;j<3;j++)
{
max_head[j]=(max_head[j]>sensor_head[j])?max_head[j]:sensor_head[j];
min_head[j]= (min_head[j]<sensor_head[j])?min_head[j]:sensor_head[j];
}
start_back_sensor();
for(j=0;j<3;j++)
{
max_back[j]=(max_back[j]>sensor_back[j])?max_back[j]:sensor_back[j];
min_back[j]= (min_back[j]<sensor_back[j])?min_back[j]:sensor_back[j];
}
}
for(j=0;j<3;j++)
{
sensor_compare_head[j]=(max_head[j]+min_head[j])/2;
sensor_compare_back[j]=(max_back[j]+min_back[j])/2;
}
}
uchar head_sensor_all(void)
{
start_head_sensor();
if( compare(sensor_head[0], sensor_compare_head[0]) && compare(sensor_head[1], sensor_compare_head[1]) && compare(sensor_head[2], sensor_compare_head[2]))
return 1;
else
return 0;
}uchar back_sensor_all(void)
{
start_back_sensor();
if( compare(sensor_back[0], sensor_compare_back[0]-30) && compare(sensor_back[1], sensor_compare_back[1]-30) && compare(sensor_back[2], sensor_compare_back[2]-30))
return 1;
else
return 0;
}
void search_path_ahead(uchar speed)
{
motor_autorun(ahead,speed);
while(1)
{
if(head_sensor_all())
{
motor_stop();
return;
}
else
{
direc_ctrl(offset,1);
}
}
}
void search_path_backward(uchar speed)
{
motor_autorun(0,speed);
while(1)
{
if(back_sensor_all())
{
motor_stop();
return;
}
else
direc_ctrl(offset,0);
}
}
8. 怎么设计循迹小车
1. 小车控制及驱动单元的选择 此部分是整个小车的大脑,是整个小车运行的核心部件,起着控制小车所有运行状态的作用。通常选用单片机作为小车的核心控制单元,在这里用台湾凌阳公司的SPCE061A单片机来做小车的控制单元。SPCE061是一款拥有2K RAM、32KFlash、32 个I/O 口,并集成了AD/DA功能强大的16位微处理器,它还拥有丰富的语音处理功能,为小车的功能扩展提供了相当大的空间。只要按照该单片机的要求对其编制程序就可以实现很多不同的功能。小车驱动电机一般利用现成的玩具小车上的配套直流电机。考虑到小车必须能够前进、倒退、停止,并能灵活转向,在左右两轮各装一个电机分别进行驱动。当左轮电机转速高于右轮电机转速时小车向右转,反之则向左转。为了能控制车轮的转速,可以采取PWM调速法,即由单片机的IOB8、IOB9输出一系列频率固定的方波,再通过功率放大来驱动电机,在单片机中编程改变输出方波的占空比就可以改变加到电机上的平均电压,从而可以改变电机的转速。左右轮两个电机转速的配合就可以实现小车的前进、倒退、转弯等功能。 2. 小车循迹的原理 这里的循迹是指小车在白色地板上循黑线行走,通常采取的方法是红外探测法。红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。红外探测器探测距离有限,一般最大不应超过15cm。对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。 (1)自制红外探头电路如图1所示,红外光的发送接收选用型号为ST168的对管。当小车在白色地面行驶时,装在车下的红外发射管发射红外线信号,经白色反射后,被接收管接收,一旦接收管接收到信号,那么图中光敏三极管将导通,比较器输出为低电平;当小车行驶到黑色引导线时,红外线信号被黑色吸收后,光敏三极管截止,比较器输出高电平,从而实现了通过红外线检测信号的功能。将检测到的信号送到单片机I/O口,当I/O口检测到的信号为高电平时,表明红外光被地上的黑色引导线吸收了,表明小车处在黑色的引导线上;同理,当I/O口检测到的信号为低电平时,表明小车行驶在白色地面上。此种方法简单,价格便宜,灵敏度可调,但是容易受到周围环境的影响,特别是在图1较强的日光灯下,对检测到的信号有一定的影响。 (2)集成式红外探头可以采用型号为E3F-DS10C4集成断续式光电开关探测器,它具有简单、可靠的工作性能,只要调节探头上的一个旋钮就可以控制探头的灵敏度。该探头输出端只有三根线(电源线、地线、信号线),只要将信号线接在单片机的I/O口,然后不停地对该I/O口进行扫描检测,当其为高电平时则检测到白纸,当为低电平时则检测到黑线。此种探头还能有效地防止普通光源(如日光灯等)的干扰。其缺点则是体积比较大,占用了小车有限的空间。 3.红外探头的安装 在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要同时在底盘装设4个红外探测头,进行两级方向纠正控制,提高其循迹的可靠性。这4个红外探头的具体位置如图2所示。图中循迹传感器共安装4个,全部在一条直线上。其中InfraredMR与InfraredML 为第一级方向控制传感器,InfraredSR 与InfraredSL 为第二级方向控制传感器。小车行走时,始终保持黑线(如图2 中所示的行走轨迹黑线)在InfraredMR和InfraredML这两个第一级传感器之间,当小车偏离黑线时,第一级探测器一旦探测到有黑线,单片机就会按照预先编定的程序发送指令给小车的控 制系统,控制系统再对小车路径予以纠正。若小车回到了轨道上,即4个探测器都只检测到白纸,则小车会继续行走;若小车由于惯性过大依旧偏离轨道,越出了第一级两个探测器的探测范围,这时第二级动作,再次对小车的运动进行纠正,使之回到正确轨道上去。可以看出,第二级方向探测器实际是第一级的后备保护,从而提高了小车循迹的可靠性。 4.软件控制 其程序控制框图如图3。小车进入循迹模式后,即开始不停地扫描与探测器连接的单片机I/O口,一旦检测到某个I/O口有信号,即进入判断处理程序(switch),先确定4个探测器中的哪一个探测到了黑线,如果InfraredML(左面第一级传感器)或者InfraredSL(左面第二级传感器)探测到黑线,即小车左半部分压到黑线,车身向右偏出,此时应使小车向左转;如果是InfraredMR(右面第一级传感 器)或InfraredSR(右面第二级传感器)探测到了黑线,即车身右半部压住黑线,小车向左偏出了轨迹,则应使小车向右转。在经过了方向调整后,小车再继续向前行走,并继续探测黑线重复上述动作。 由于第二级方向控制为第一级的后备,则两个等级间的转向力度必须相互配合。 电动循迹小车设计1. 小车控制及驱动单元的选择 此部分是整个小车的大脑,是整个小车运行的核心部件,起着控制小车所有运行状态的作用。通常选用单片机作为小车的核心控制单元,在这里用台湾凌阳公司的SPCE061A单片机来做小车的控制单元。SPCE061是一款拥有2K RAM、32KFlash、32 个I/O 口,并集成了AD/DA功能强大的16位微处理器,它还拥有丰富的语音处理功能,为小车的功能扩展提供了相当大的空间。只要按照该单片机的要求对其编制程序就可以实现很多不同的功能。小车驱动电机一般利用现成的玩具小车上的配套直流电机。考虑到小车必须能够前进、倒退、停止,并能灵活转向,在左右两轮各装一个电机分别进行驱动。当左轮电机转速高于右轮电机转速时小车向右转,反之则向左转。为了能控制车轮的转速,可以采取PWM调速法,即由单片机的IOB8、IOB9输出一系列频率固定的方波,再通过功率放大来驱动电机,在单片机中编程改变输出方波的占空比就可以改变加到电机上的平均电压,从而可以改变电机的转速。左右轮两个电机转速的配合就可以实现小车的前进、倒退、转弯等功能。 2. 小车循迹的原理 这里的循迹是指小车在白色地板上循黑线行走,通常采取的方法是红外探测法。红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。红外探测器探测距离有限,一般最大不应超过15cm。对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。 (1)自制红外探头电路如图1所示,红外光的发送接收选用型号为ST168的对管。当小车在白色地面行驶时,装在车下的红外发射管发射红外线信号,经白色反射后,被接收管接收,一旦接收管接收到信号,那么图中光敏三极管将导通,比较器输出为低电平;当小车行驶到黑色引导线时,红外线信号被黑色吸收后,光敏三极管截止,比较器输出高电平,从而实现了通过红外线检测信号的功能。将检测到的信号送到单片机I/O口,当I/O口检测到的信号为高电平时,表明红外光被地上的黑色引导线吸收了,表明小车处在黑色的引导线上;同理,当I/O口检测到的信号为低电平时,表明小车行驶在白色地面上。此种方法简单,价格便宜,灵敏度可调,但是容易受到周围环境的影响,特别是在图1较强的日光灯下,对检测到的信号有一定的影响。 (2)集成式红外探头可以采用型号为E3F-DS10C4集成断续式光电开关探测器,它具有简单、可靠的工作性能,只要调节探头上的一个旋钮就可以控制探头的灵敏度。该探头输出端只有三根线(电源线、地线、信号线),只要将信号线接在单片机的I/O口,然后不停地对该I/O口进行扫描检测,当其为高电平时则检测到白纸,当为低电平时则检测到黑线。此种探头还能有效地防止普通光源(如日光灯等)的干扰。其缺点则是体积比较大,占用了小车有限的空间。 3.红外探头的安装 在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要同时在底盘装设4个红外探测头,进行两级方向纠正控制,提高其循迹的可靠性。这4个红外探头的具体位置如图2所示。图中循迹传感器共安装4个,全部在一条直线上。其中InfraredMR与InfraredML 为第一级方向控制传感器,InfraredSR 与InfraredSL 为第二级方向控制传感器。小车行走时,始终保持黑线(如图2 中所示的行走轨迹黑线)在InfraredMR和InfraredML这两个第一级传感器之间,当小车偏离黑线时,第一级探测器一旦探测到有黑线,单片机就会按照预先编定的程序发送指令给小车的控 制系统,控制系统再对小车路径予以纠正。若小车回到了轨道上,即4个探测器都只检测到白纸,则小车会继续行走;若小车由于惯性过大依旧偏离轨道,越出了第一级两个探测器的探测范围,这时第二级动作,再次对小车的运动进行纠正,使之回到正确轨道上去。可以看出,第二级方向探测器实际是第一级的后备保护,从而提高了小车循迹的可靠性。 4.软件控制 其程序控制框图如图3。小车进入循迹模式后,即开始不停地扫描与探测器连接的单片机I/O口,一旦检测到某个I/O口有信号,即进入判断处理程序(switch),先确定4个探测器中的哪一个探测到了黑线,如果InfraredML(左面第一级传感器)或者InfraredSL(左面第二级传感器)探测到黑线,即小车左半部分压到黑线,车身向右偏出,此时应使小车向左转;如果是InfraredMR(右面第一级传感 器)或InfraredSR(右面第二级传感器)探测到了黑线,即车身右半部压住黑线,小车向左偏出了轨迹,则应使小车向右转。在经过了方向调整后,小车再继续向前行走,并继续探测黑线重复上述动作。 由于第二级方向控制为第一级的后备,则两个等级间的转向力度必须相互配合。第二级通常是在超出第一级的控制范围的情况下发生作用,它也是最后一层保护,所以它必须要保证小车回到正确轨迹上来,则通常使第二级转向力度大于第一级,即level2>level1(level1、level2为小车转向力度,其大小通过改变单片机输出的占空比的大小来改变),具体数值在实地实验中得到。根据上面所讲述的方法,我们可以较容易地做出按照一定轨迹行走的智能电动小车。但是按照该方法行走的小车如果是走直线,有可能会是蛇形前进。为了使小车能够按轨迹行走的更流畅,可以在软件编程时运用一些简单的算法。例如,在对小车进行纠偏时,适当提前停止纠偏,而不要等到小车完全不偏时再停止,以防止小车的过冲。 第二级通常是在超出第一级的控制范围的情况下发生作用,它也是最后一层保护,所以它必须要保证小车回到正确轨迹上来,则通常使第二级转向力度大于第一级,即level2>level1(level1、level2为小车转向力度,其大小通过改变单片机输出的占空比的大小来改变),具体数值在实地实验中得到。 根据上面所讲述的方法,我们可以较容易地做出按照一定轨迹行走的智能电动小车。但是按照该方法行走的小车如果是走直线,有可能会是蛇形前进。为了使小车能够按轨迹行走的更流畅,可以在软件编程时运用一些简单的算法。例如,在对小车进行纠偏时,适当提前停止纠偏,而不要等到小车完全不偏时再停止,以防止小车的过冲
9. 基于51单片机的智能循迹小车如何实现小车的速度不会随电池的电量而变化.(程序)
1、电池电压高的话可以用稳压的办法,如将12V电池稳压至9V用,当降到9V就要换电池或充电,保证电机驱动供电电压9V不变
2、或者就是速度闭环了,取一个低速作为目标值,保证低压时也能达到该速度
10. 智能小车循迹左右摆动幅度过大,怎么办
增加传感器数量,优化软件算法!