A. 括号10+4括号乘以25怎样用简便算法
=10*25+4*25=250+100=350
B. 25乘以24用简便方法计算怎么算
解析:采用拆分法,然后根据乘法结合律进行计算即可。
25×24
=25×4×6(将24拆分成4×6)
=100×6(将25和4相乘得到整百数,使计算简单化)
=600
乘法结合律用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。
简便方法计算的相关定律
1、加法交换律:两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b+c=a+c+b
2、加法结合律:先把前两个数相加,或先把后两个数相加,和不变叫做加法结合律。
字母公式:a+b+c=a+(b+c)
3、乘法交换律:两个因数交换位置,积不变。
字母公式:a×b=b×a
4、乘法结合律:先乘前两个数,或先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c)
5、乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变。
字母公式:(a+b)×c=a×c+b×c
6、除法性质的概念为:一个数连续除以两个数,可以先把后两个数相乘,再相除。
字母公式:a÷b÷c=a÷(b×c)
7、商不变的规律
概念:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
8、减法性质:一个数连续减去两个数,等于这个数减去两个数的和。
字母公式:a-b-c=a-(b+c)
C. 24×25的简便运算。脱式
简便计算如下
解:24×25
=24×5×5
=120×5
=600
简便运算公式:
1、加法
加法交换律:a+b=b+a;
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
2、减法
a-b=-(b-a)
a-b-c=a-(b+c)
减法有一个口诀:加括号,变符号。
3、乘法
乘法交换律:a x b=b x a;
乘法结合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
D. 25X(20十4)的简便运算
25X(20十4)的简便运算?
乘法的分配律,
25X(20十4)=25*20+25*4=500+100=600。
的简便运算。
E. 46×25的简便计算方法
46×25的简便算法就是用4×2然后6×5然后十位以上的然后再前进一位就可以了。这样的方式是最简便的也可以列竖式。竖式的方法也是同样的两两相乘,然后两个数再加起来就是得得到最后的方法。
F. 48*25简便算法
48*25的简便方法的计算步骤是:
48×25
=(12×4)×25
=12×(4×25)
=12×100
=1200
解题分析:因为25乘以4等于一百是简便算法中利用的常见式子,又因为48是4的倍数,所以讲48拆成4与12的乘积,然后利用乘法的结合律进行计算,先得到100然后与12相乘,以达到减少计算量的目的。
(6)二倍加四的和乘25的简便算法扩展阅读
乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算
乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;
或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
加法交换律
加法交换律用于调换各个数的位置:a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
注意事项
在进行简便运算(四则运算 )时,应注意运算符号(乘除和加减)和大、中、小括号之间的关连。不要越级运算,以免发生运算错误。
G. 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
H. 20+4括号,乘25等于多少用简便方法计算。
(20+4)x25
=25x20+25x4
=500+100
=600
希望能够帮到你,还望采纳谢谢!
I. 232x25简便运算
简便的方法是232÷4×(25×4)等于58×100=5800。232×25等于5800。
J. 25×44用简便方法计算
25✖44的简便算法为:
25✖44=25✖(40+4)=25✖40+25✖4=1000+100=1100
即:把44分成40+4,因为25乘以4可以快速计算出来。
使用到的运算法则为:乘法的分配律
(10)二倍加四的和乘25的简便算法扩展阅读:
整数的乘法运算法则为:
交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律:ab=ba
2.乘法结合律:(ab)c=a(bc)
3.乘法分配律:(a+b)c=ac+bc