导航:首页 > 源码编译 > 贝叶斯算法数据挖掘

贝叶斯算法数据挖掘

发布时间:2022-09-06 17:44:37

Ⅰ 贝叶斯分类算法在数据挖掘中有什么应用

一般用朴素贝叶斯利用先验概率求解实际概率,进行预测和分类。
分类应用多了去了,最有名的就是信用评价了吧~

贝叶斯就那点东西,没啥可研究的了。。。

搞概率相关的话模糊逻辑可能容易出点东西~

Ⅱ 数据挖掘的技术有哪些

①决策树技术


决策树是一种非常成熟的、普遍采用的数据挖掘技术。在决策树里,所分析的数据样本先是集成为一个树根,然后经过层层分枝,最终形成若干个结点,每个结点代表一个结论。


②神经网络技术


神经网络是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。神经网络是人脑的抽象计算模型,数据挖掘中的“神经网络”是由大量并行分布的微处理单元组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。


③回归分析技术


回归分析包括线性回归,这里主要是指多元线性回归和逻辑斯蒂回归。其中,在数据化运营中更多使用的是逻辑斯蒂回归,它又包括响应预测、分类划分等内容。


④关联规则技术


关联规则是在数据库和数据挖掘领域中被发明并被广泛研究的一种重要模型,关联规则数据挖掘的主要目的是找出数据集中的频繁模式,即多次重复出现的模式和并发关系,即同时出现的关系,频繁和并发关系也称作关联。


⑤聚类分析技术


聚类分析有一个通俗的解释和比喻,那就是“物以类聚,人以群分”。针对几个特定的业务指标,可以将观察对象的群体按照相似性和相异性进行不同群组的划分。经过划分后,每个群组内部各对象间的相似度会很高,而在不同群组之间的对象彼此间将具有很高的相异度。


⑥贝叶斯分类技术


贝叶斯分类方法是非常成熟的统计学分类方法,它主要用来预测类成员间关系的可能性。比如通过一个给定观察值的相关属性来判断其属于一个特定类别的概率。贝叶斯分类方法是基于贝叶斯定理的,朴素贝叶斯分类方法作为一种简单贝叶斯分类算法甚至可以跟决策树和神经网络算法相媲美。

Ⅲ 数据挖掘-朴素贝叶斯算法

朴素贝叶斯算法,主要用于对相互独立的属性的类变量的分类预测。(各个属性/特征之间完全没有关系,叫做相互独立,事实上这很难存在,但是这个方法依然比较有效。)

大学的概率论里一般都学过这个贝叶斯定理,简单阐述如下:

若事件 , ,…构成一个事件且都有正概率,则对任意一个事件Y,有如下公式成立:则有

如果X表示特征/属性,Y表示类变量,如果类变量和属性之间的关系不确定,那么X和Y可以视作随机变量,则 为Y的后验概率, 为Y的先验概率。
以图为例:

我们需要根据身高、体重、鞋码判断是男是女,则Y就是性别,X就是(身高、体重、鞋码)这一组特征。如果我们要先算是男的概率,则先验概率就是 ,而后验概率则是我们未来将要输入的一组特征已知的情况下,Y=男的概率(要预测的分类的概率),这样的话,根据贝叶斯定理,我们就可以用 来求出 ,这就是贝叶斯定理在预测中的应用。

假设Y变量取y值时概率为P(Y=y),X中的各个特征相互独立,则有公式如下:
其中每个特征集X包含d个特征。
根据公式,对比上面的图来说,如果性别是男的时候,身高是高,体重是重,鞋码为大的概率就等于

有了这个公式,结合之前的贝叶斯公式,就能得到给定一组特征值的情况下, 这组特征属于什么样的类别的概率公式:
其中的X代表一组特征, 代表一组中的一个。
对于所有的Y来说,P(X)时固定的,因此只要找出使分子 最大的类别就可以判断预测的类别了。

的概率分为两种情况来区别,一种是对分类特征的概率确定,一种是连续特征的概率确定。

接下来借用《数据挖掘导论》上的例子来说明概率确定的方式。

对于分类的特征,可以首先找到训练集中为y值的个数,然后根据不同的特征类型占这些个数中的比例作为分类特征的概率。
例如上表中求不拖欠贷款的情况下,有房的人数就是 ,不拖欠贷款的有7个,其中有房的是3个。以此类推可以求出婚姻状况的条件概率。
年收入是连续特征,需要区分对待。

根据上述算法,如果要求没有拖欠贷款情况下,年收入是120K的概率,就是

如果要预测测试记录 X =(有房=否,婚姻状况=已婚,年收入=120K)这个样本是否可能拖欠贷款,则需要计算两个概率: 和
则有:
由于 是不变的(对于Y=是和Y=否),则只考虑上面的分子即可,那么抛开P(X)不看,则有:


其中7/10就是P(Y=否),α是P(X)
同理可得P(Y=是|X) = 1 * 0 * 1.2e-1 = 0.
这样一比较,那么分类就是否。

看这个例子中,如果有一个特征的条件概率是0,那么整体的概率就是0,从而后验概率也一定是0,那么如果训练集样本太少,这种方法就不是很准确了。
如果当训练集样本个数比特征还少的时候,就无法分类某些测试集了,因此引入 m估计(m-estimate) 来估计条件概率,公式如下:

其中,n是类 中的样本总数, 是类 中取 的样本数, 是称为等价样本大小的参数, 是用户指定的参数,p可以看作在类 中观察特征值 的先验概率。等价样本大小决定先验概率 和观测概率 之间的平衡。

引入m估计的根本原因是样本数量过小。所以为了避免此问题,最好的方法是等效的扩大样本的数量,即在为观察样本添加m个等效的样本,所以要在该类别中增加的等效的类别的数量就是等效样本数m乘以先验估计p。

在之前的例子中,设m=3,p=1/3(m可以设置为特征数量,p则是倒数)。则:
从而可以重新计算 。从而解决了某个条件概率为0的问题。

面对相互独立的特征比较适用,如果有相关的特征,则会降低其性能。

Ⅳ 数据挖掘需要学习哪些知识

1.统计知识


在做数据分析,统计的知识肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。


2.概率知识


而朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。


3.数据挖掘的数据类型


那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。


4.数据仓库


什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造 。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。


关于数据挖掘需要学习哪些知识,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅳ 数据挖掘十大经典算法(1)——朴素贝叶斯(Naive Bayes)

在此推出一个算法系列的科普文章。我们大家在平时埋头工程类工作之余,也可以抽身对一些常见算法进行了解,这不仅可以帮助我们拓宽思路,从另一个维度加深对计算机技术领域的理解,做到触类旁通,同时也可以让我们搞清楚一些既熟悉又陌生的领域——比如数据挖掘、大数据、机器学习——的基本原理,揭开它们的神秘面纱,了解到其实很多看似高深的领域,其实背后依据的基础和原理也并不复杂。而且,掌握各类算法的特点、优劣和适用场景,是真正从事数据挖掘工作的重中之重。只有熟悉算法,才可能对纷繁复杂的现实问题合理建模,达到最佳预期效果。

本系列文章的目的是力求用最干练而生动的讲述方式,为大家讲解由国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 于2006年12月评选出的数据挖掘领域的十大经典算法。它们包括:

本文作为本系列的第一篇,在介绍具体算法之前,先简单为大家铺垫几个数据挖掘领域的常见概念:

在数据挖掘领域,按照算法本身的行为模式和使用目的,主要可以分为分类(classification),聚类(clustering)和回归(regression)几种,其中:

打几个不恰当的比方

另外,还有一个经常有人问起的问题,就是 数据挖掘 机器学习 这两个概念的区别,这里一句话阐明我自己的认识:机器学习是基础,数据挖掘是应用。机器学习研制出各种各样的算法,数据挖掘根据应用场景把这些算法合理运用起来,目的是达到最好的挖掘效果。

当然,以上的简单总结一定不够准确和严谨,更多的是为了方便大家理解打的比方。如果大家有更精当的理解,欢迎补充和交流。

好了,铺垫了这么多,现在终于进入正题!
作为本系列入门的第一篇,先为大家介绍一个容易理解又很有趣的算法—— 朴素贝叶斯

先站好队,朴素贝叶斯是一个典型的 有监督的分类算法

光从名字也可以想到,要想了解朴素贝叶斯,先要从 贝叶斯定理 说起。
贝叶斯定理是我们高中时代学过的一条概率学基础定理,它描述了条件概率的计算方式。不要怕已经把这些知识还给了体育老师,相信你一看公式就能想起来。

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:

其中,P(AB)表示A和B同时发生的概率,P(B)标识B事件本身的概率。

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A)。

而贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:

有了贝叶斯定理这个基础,下面来看看朴素贝叶斯算法的基本思路。

你看,其思想就是这么的朴素。那么,属于每个分类的概率该怎么计算呢?下面我们先祭出形式化语言!

那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

如果你也跟我一样,对形式化语言有严重生理反应,不要怕,直接跳过前面这一坨,我们通过一个鲜活的例子,用人类的语言再解释一遍这个过程。

某个医院早上收了六个门诊病人,如下表。

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他最有可能患有何种疾病?

本质上,这就是一个典型的分类问题, 症状 职业 是特征属性, 疾病种类 是目标类别

根据 贝叶斯定理

可得

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

这是可以计算的。

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

接下来,我们再举一个朴素贝叶斯算法在实际中经常被使用的场景的例子—— 文本分类器 ,通常会用来识别垃圾邮件。
首先,我们可以把一封邮件的内容抽象为由若干关键词组成的集合,这样是否包含每种关键词就成了一封邮件的特征值,而目标类别就是 属于垃圾邮件 不属于垃圾邮件

假设每个关键词在一封邮件里出现与否的概率相互之间是独立的,那么只要我们有若干已经标记为垃圾邮件和非垃圾邮件的样本作为训练集,那么就可以得出,在全部垃圾邮件(记为Trash)出现某个关键词Wi的概率,即 P(Wi|Trash)

而我们最重要回答的问题是,给定一封邮件内容M,它属于垃圾邮件的概率是多大,即 P(Trash|M)

根据贝叶斯定理,有

我们先来看分子:
P(M|Trash) 可以理解为在垃圾邮件这个范畴中遇见邮件M的概率,而一封邮件M是由若干单词Wi独立汇聚组成的,只要我们所掌握的单词样本足够多,因此就可以得到

这些值我们之前已经可以得到了。

再来看分子里的另一部分 P(Trash) ,这个值也就是垃圾邮件的总体概率,这个值显然很容易得到,用训练集中垃圾邮件数除以总数即可。

而对于分母来说,我们虽然也可以去计算它,但实际上已经没有必要了,因为我们要比较的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一样的,因此只需要比较分子大小即可。

这样一来,我们就可以通过简单的计算,比较邮件M属于垃圾还是非垃圾二者谁的概率更大了。

朴素贝叶斯的英文叫做 Naive Bayes ,直译过来其实是 天真的贝叶斯 ,那么他到底天真在哪了呢?

这主要是因为朴素贝叶斯的基本假设是所有特征值之间都是相互独立的,这才使得概率直接相乘这种简单计算方式得以实现。然而在现实生活中,各个特征值之间往往存在一些关联,比如上面的例子,一篇文章中不同单词之间一定是有关联的,比如有些词总是容易同时出现。

因此,在经典朴素贝叶斯的基础上,还有更为灵活的建模方式—— 贝叶斯网络(Bayesian Belief Networks, BBN) ,可以单独指定特征值之间的是否独立。这里就不展开了,有兴趣的同学们可以做进一步了解。

最后我们来对这个经典算法做个点评:

优点:

缺点:

好了,对于 朴素贝叶斯 的介绍就到这里,不知道各位看完之后是否会对数据挖掘这个领域产生了一点兴趣了呢?

Ⅵ 数据挖掘十大经典算法之朴素贝叶斯

朴素贝叶斯,它是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,**是因为它假设每个输入变量是独立的。**这个假设很硬,现实生活中根本不满足,但是这项技术对于绝大部分的复杂问题仍然非常有效。

贝叶斯原理、贝叶斯分类和朴素贝叶斯这三者之间是有区别的。

贝叶斯原理是最大的概念,它解决了概率论中“逆向概率”的问题,在这个理论基础上,人们设计出了贝叶斯分类器,朴素贝叶斯分类是贝叶斯分类器中的一种,也是最简单,最常用的分类器。朴素贝叶斯之所以朴素是因为它假设属性是相互独立的,因此对实际情况有所约束,**如果属性之间存在关联,分类准确率会降低。**不过好在对于大部分情况下,朴素贝叶斯的分类效果都不错。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换而言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

朴素贝叶斯分类 常用于文本分类 ,尤其是对于英文等语言来说,分类效果很好。它常用于垃圾文本过滤、情感预测、推荐系统等。

1、 需要知道先验概率 

先验概率是计算后验概率的基础。在传统的概率理论中,先验概率可以由大量的重复实验所获得的各类样本出现的频率来近似获得,其基础是“大数定律”,这一思想称为“频率主义”。而在称为“贝叶斯主义”的数理统计学派中,他们认为时间是单向的,许多事件的发生不具有可重复性,因此先验概率只能根据对置信度的主观判定来给出,也可以说由“信仰”来确定。 

2、按照获得的信息对先验概率进行修正 

在没有获得任何信息的时候,如果要进行分类判别,只能依据各类存在的先验概率,将样本划分到先验概率大的一类中。而在获得了更多关于样本特征的信息后,可以依照贝叶斯公式对先验概率进行修正,得到后验概率,提高分类决策的准确性和置信度。 

3、分类决策存在错误率 

由于贝叶斯分类是在样本取得某特征值时对它属于各类的概率进行推测,并无法获得样本真实的类别归属情况,所以分类决策一定存在错误率,即使错误率很低,分类错误的情况也可能发生。 

第一阶段:准备阶段

在这个阶段我们需要确定特征属性,同时明确预测值是什么。并对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。

第二阶段:训练阶段

这个阶段就是生成分类器,主要工作是 计算每个类别在训练样本中的出现频率 及 每个特征属性划分对每个类别的条件概率。

第三阶段:应用阶段

这个阶段是使用分类器对新数据进行分类。

优点:

(1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。

(2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。

(3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。

缺点:

(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。

(2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

(3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。

(4)对输入数据的表达形式很敏感。

参考:

https://blog.csdn.net/qiu__liao/article/details/90671932

https://blog.csdn.net/u011067360/article/details/24368085

Ⅶ 大数据挖掘的算法有哪些

大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。

如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。

Ⅷ 数据挖掘常用算法有哪些

1、 朴素贝叶斯


朴素贝叶斯(NB)属于生成式模型(即需要计算特征与类的联合概率分布),计算过程非常简单,只是做了一堆计数。NB有一个条件独立性假设,即在类已知的条件下,各个特征之间的分布是独立的。这样朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中的R来讲,就是特征冗余。


2、逻辑回归(logistic regression)


逻辑回归是一个分类方法,属于判别式模型,有很多正则化模型的方法(L0,L1,L2),而且不必像在用朴素贝叶斯那样担心特征是否相关。与决策树与SVM相比,还会得到一个不错的概率解释,甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法online gradient descent)。如果需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者希望以后将更多的训练数据快速整合到模型中去,那么可以使用它。


3、 线性回归


线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化。


4、最近邻算法——KNN


KNN即最近邻算法,其主要过程为:计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);对上面所有的距离值进行排序;选前k个最小距离的样本;根据这k个样本的标签进行投票,得到最后的分类类别;如何选择一个最佳的K值,这取决于数据。


5、决策树


决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。


6、SVM支持向量机


高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

Ⅸ 数据分析中的数据挖掘侧重学习什么


数据挖掘这项工作十分有前景,同时在薪资方面也十分出色。下面是学习数据挖掘需要侧重的知识点。
1.统计知识
在做数据分析,统计的知识肯定是需要的, Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
2.概率知识
而朴素贝叶斯算法需要概率方面的知识, SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、P ython这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++。
3.数据挖掘的数据类型
那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。
4.数据仓库
数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造。

关于大数据挖掘工程师的课程,推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。点击预约免费试听课。

Ⅹ 贝叶斯算法不支持什么内容类型的数据

摘要 如果我们拥有大量的数据,而且对数据的了解又很少,这时候可以使用朴素贝叶斯算法。例如:公司可能由于兼并了一家竞争对手而获得了大量的销售数据,在处理这些数据的时候,可以用朴素贝叶斯算法作为起点。应该了解的是,这个算法有一个明显的局限:就是只能处理离散的内容类型,如果选择的数据结构中包含有内容类型不是Discrete的数据列,那么朴素贝叶斯算法建立的挖掘模型会忽略这些数据。在这个算法中只有少量可配置属性。

阅读全文

与贝叶斯算法数据挖掘相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:769
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:844
安卓怎么下载60秒生存 浏览:803
外向式文件夹 浏览:240
dospdf 浏览:431
怎么修改腾讯云服务器ip 浏览:392
pdftoeps 浏览:496
为什么鸿蒙那么像安卓 浏览:736
安卓手机怎么拍自媒体视频 浏览:186
单片机各个中断的初始化 浏览:724
python怎么集合元素 浏览:481
python逐条解读 浏览:833
基于单片机的湿度控制 浏览:499
ios如何使用安卓的帐号 浏览:883
程序员公园采访 浏览:812
程序员实战教程要多长时间 浏览:979
企业数据加密技巧 浏览:135
租云服务器开发 浏览:814
程序员告白妈妈不同意 浏览:336
攻城掠地怎么查看服务器 浏览:601