导航:首页 > 源码编译 > 面部表情识别算法

面部表情识别算法

发布时间:2022-09-07 22:10:08

‘壹’ 人脸识别系统的核心是什么

人脸识别是一种基于人的脸部特征信息进行身份认证的生物特征识别技术。它集成了人工智能、机器识别、机器学习、模型理论、视频图像处理等多种专业技术。人脸识别主要分四步完成:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取、匹配与识别。 楼上已经很详细的说明了人脸识别的技术原理,这里不做过多赘述。
在人脸识别业界,拥有人脸识别技术核心实力,即是拥有自主知识产权的人脸识别SDK。人脸识别技术,可以看LFW榜和FDDB榜:face++ 99.5% , 商汤 Deepid3 99.53% , 腾讯 Tencent 99.65% , 网络 Bai 99.77%,颜鉴(ColorReco)99.64%,都是一线了,赶超国外的google 。之所以只列举这几家公司,是因为它们相比于其他公司,优势在于有自己的核心技术,而不是渠道商或传统厂商。值得一提的是,这些公司目前规模都不大,但却像谷歌、微软一样都有自己的人工智能研究院,紧密追随国际最新的科研成果。像前段时间很火的阿尔法狗,其工作原理是深度学习,这一技术其实在中国的这些公司里都已经拥有并投入商用了。

‘贰’ 通过面部表情来识别人的心理

通过面部表情来识别人的心理

通过面部表情来识别人的心理,生活中,想知道一个人内心在想什么,其实是有方法的,我们可以通过人们的面部表情,来识别人的心理变化。那么大家知道要如何通过面部表情来识别人的心理吗?下面和我一起来了解一下吧!

通过面部表情来识别人的心理1

在人们日常交流中,只有7%的信息是通过语言来传递的,55%的信息是通过面部表情来体现的。可见,表情信息在人们之间交流的重要性。

随着人工智能和模式识别的不断发展,人机智能交互中的一项重要技术——人脸表情识别也受到关注。人脸表情识别主要是利用人脸识别技术,对人脸的表情信息进行特征提取并归类,使计算机能获知人的表情信息,进而推断人的心理状态,从而实现人机之间的高级智能交互。

从识别模式来看,人脸表情识别与我们的行为心里学是一致的。行为心里学有一个说法是瞬间识人的超级心里密码是在第一时间看对方的脸。通过表情判断一个人的心里情况,也就是通过细小的表情和微小的动作来观察对方的心里,对即将发生的事情做出一个准确推断。

目前,人脸表情识别的应用领域主要是安全领域、智能机器人研制、电脑游戏、医疗领域等。并且人脸表情识别主要定义六种表情生气、厌恶、害怕、伤心、高兴、吃惊,将人脸划分为若干个运动单元来描述面部动作,这些运动单元显示了人脸运动与表情的对应关系。

人脸表情识别可分为人脸图像的获取与预处理、表情特征提取和表情分类这三部分。基本上与人脸识别在人脸图像的获取和预处理这些环节上是一致的,只是在特征提取方面有区别,人脸识别提取的特征是同一人脸的个体差异,而表情识别提取的特征是同一人脸的不同表情下的差异。

通过面部表情来识别人的心理2

亚里士多德说,脸是心灵的一扇窗,透过表情可以看到一个人的思想。古罗马时期的大哲学家西塞罗也是这一观点的支持者。的确,两千年过去了,面部表情仍然被普遍认为是判断人们感受的一种有效方式,而且不论年龄、性别和文化差异。比如:挑起眉毛表示困惑,微笑表示幸福,皱眉表示悲伤。

但事实果真如此吗?心理学家针对数百篇关于面部表情和潜在情绪之间关系的论文进行了一项分析研究,得出的结论有点儿令人意外:并没有翔实的科学证据表明,人们的日常情绪可以通过面部表情来识别。也就是说,一个没有面带微笑的人,并不意味着他不快乐。

心理学家发现,以城市为生活背景的.成年人,生气时皱眉的机率平均为30%。这就意味着, 人们在生气时,大约有70%的情况是不会皱眉的。相反,人们把皱眉用在了别处,比如,当人们集中注意力时,当有人讲了一个糟糕的笑话时,或者当他们体内有气体时(想要放屁时)。

研究人员得出结论,皱眉,或者面有怒色,是人们表达愤怒的方式之一,但绝不是唯一。人类面部表情之复杂和难以捉摸,不仅限于愤怒,也适用于心理学家定义的六种情绪类别:愤怒、厌恶、恐惧、快乐、悲伤和惊讶。

这让人们对科技公司开发人工智能算法的努力产生了疑问。科技公司总是声称,人工智能算法可以识别面部表情,并计算出潜在的情绪状态。例如,微软声称其"情感分析应用程序"能够通过检测人们的视频片段来判断他们的内心感受。然而,美国俄亥俄州立大学的计算机工程师阿历克斯·马丁内斯对此表示怀疑。他认为,试图根据人脸图像识别人类情绪的做法,事实上是忽略了产生情绪的背景环境的重要性。

首先,面部表情是人们用来交流的许多非语言形式之一,类似的还有身体语言。人工智能识别人的情绪也需要考虑这些因素。而了解情绪产生的背景对于面部表情的解读似乎更为重要。对此,马丁内斯博士引用了一项实验来加以证明。在该实验中,研究人员给参与者展示了一名男子的脸部特写照片,照片上的人嘴巴大张着似乎在尖叫,脸涨得通红。

仅仅根据这一点,大多数参与者会猜想照片上的人非常生气。然而将照片拉到全景,才发现照片实际上是一名足球运动员伸出双臂庆祝进球。他那张局部看起来像是生气的脸,实际上是一种狂喜的表情。

考虑到人们在大部分时间里无法通过表情来准确猜测彼此的情绪状态,马丁内斯博士认为,计算机也不可能做到这一点。他表示:"一些公司声称算法可以通过人们的表情来识别他们的情绪状态,并将其应用到比如招聘等场景中,""有些公司要求应聘者提交一份视频简历,然后由一个机器学习系统对其面部表情进行分析,之后得出是否适合雇佣的结论,这种做法真的很令人震惊,因为有些算法可能是基于错误的假设,甚至是一个危险的假设,而在此基础上得出的结论可能是非常可怕、甚至是危险的。"

‘叁’ 人脸识别主要识别的是什么

人脸识别是采集人脸的生物信息特征,也就是我们所说的生物ID,将其存储在数据库中。在识别时,将人脸和数据库中的生物ID进行比对、识别。

‘肆’ opencv的人脸识别基于什么特征

基于几何特征的人脸识别方法

基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。

模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。

基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。


基于代数特征的人脸识别方法

在基于代数特征的人脸识别中,每一幅人脸图像被看成是以像素点灰度为元素的矩阵,用反映某些性质的数据特征来表示人脸的特征。 设人脸图像 ) , ( y x I 为二维 N M × 灰度图像,同样可以看成是 N M n × = 维列向量,可视为 N M × 维空间中的一个点。但这样的一个空间中,并不是空间中的每一部分都包含有价值的信息,故一般情况下,需要通过某种变换,将如此巨大的空间中的这些点映射到一个维数较低的空间中去。然后利用对图像投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。 在基于代数特征的人脸识别方法中,主成分分析法(PCA)和Fisher 线性判别分析(LDA)是研究最多的方法。本章简要介绍介绍了PCA。

完整的PCA(PrincipalComponentAnalysis)人脸识别的应用包括四个步骤:人脸图像预处理;读入人脸库,训练形成特征子空间;把训练图像和测试图像投影的上一步骤中得到的子空间上;选择一定的距离函数进行识别。详细描述如下:

4.1读入人脸库

一归一化人脸库后,将库中的每个人选择一定数量的图像构成训练集,设归一化后的图像是n×n,按列相连就构成n2维矢量,可视为n2维空间中的一个点,可以通过K-L变换用一个低维子空间描述这个图像。

4.2计算K.L变换的生成矩阵

训练样本集的总体散布矩阵为产生矩阵,即

或者写成:

式中xi为第i个训练样本的图像向量,|l为训练样本的均值向量,M为训练样本的总数。为了求n2×n2维矩阵∑的特征值和正交归一化的特征向量,要直接计算的话,计算量太大,由此引入奇异值分解定理来解决维数过高的问题。

4.3利用奇异值分解(AVD)定理计算图像的特征值和特征向量

设A是一个秩为r的行n×r维矩阵,则存在两个正交矩阵和对角阵:

其中凡则这两个正交矩阵和对角矩阵满足下式:

其中为矩阵的非零特征值,

4.4 把训练图像和测试图像投影到特征空间每一副人脸图像向特征脸子空间投影,得到一组坐标系数,就对应于子空间中的一个点。同样,子空间中的任一点也对应于~副图像。这组系数便可作为人脸识别的依据,也就是这张人脸图像的特征脸特征。也就是说任何一幅人脸图像都可以表示为这组特征脸的线性组合,各个加权系数就是K.L变换的展开系数,可以作为图像的识别特征,表明了该图像在子空间的位置,也就是向量

可用于人脸检测,如果它大于某个阈值,可以认为f是人脸图像,否则就认为不是。这样原来的人脸图象识别问题就转化为依据子空间的训练样本点进行分类的问题。


基于连接机制的人脸识别方法

基于连接机制的识别方法的代表性有神经网络和弹性匹配法。

神经网络(ANN)在人工智能领域近年来是一个研究热门,基于神经网络技术来进行人脸特征提取和特征识别是一个积极的研究方向。神经网络通过大量简单神经元互联来构成复杂系统,在人脸识别中取得了较好的效果,特别是正面人脸图像。常用的神经网络有:BP网络、卷积网络、径向基函数网络、自组织网络以及模糊神经网络等n¨。BP网络的运算量较小耗时也短,它的自适应功能使系统的鲁棒性增强。神经网络用于人脸识别,相比较其他方法,其可以获得识别规则的隐性表达,缺点是训练时间长、运算量大、收敛速度慢且容易陷入局部极小点等。Gutta等人结合RBF与树型分类器的混合分类器模型来进行人脸识别乜螂1。Lin等人采用虚拟样本进行强化和反强化学习,采用模块化的网络结构网络的学习加快,实现了基于概率决策的神经网络方法获得了较理想结果,。此种方法能较好的应用于人脸检测和识别的各步骤中。弹性匹配法采用属性拓扑图代表人脸,拓扑图的每个顶点包含一个特征向量,以此来记录人脸在该顶点位置周围的特征信息¨引。拓扑图的顶点是采用小波变换特征,对光线、角度和尺寸都具有一定的适应性,且能适应表情和视角的变化,其在理论上改进了特征脸算法的一些缺点。


基于三维数据的人脸识别方法

一个完整的人脸识别系统包括人脸面部数据的获取、数据分析处理和最终结果输出三个部分。图2-1 显示了三维人脸识别的基本步骤:1 、通过三维数据采集设备获得人脸面部的三维形状信息;2 、对获取的三维数据进行平滑去噪和提取面部区域等预处理;3 、从三维数据中提取人脸面部特征,通过与人脸库中的数据进行比对;4 、用分类器做分类判别,输出最后决策结果。

基于三维数据的方法的代表性是基于模型合成的方法和基于曲率的方法。

基于模型合成的方法,它的基本思想为:输入人脸图像的二维的,用某种技术恢复(或部分恢复)人脸的三维信息,再重新合成指定条件下的人脸图像。典型代表是3D可变形模型和基于形状恢复的3D增强人脸识别算法。3D可变形模型首先通过200个高精度的3D人脸模型构建一个可变形的3D人脸模型,用这个模型来对给定的人脸图像拟合,获得一组特定的参数,再合成任何姿态和光照的人脸图像n卜捌。基于形状恢复的3D增强人脸识别算法是利用通用的3D人脸模型合成新的人脸图像,合成过程改变了一定的姿态与光源情况。

曲率是最基本的表达曲面信息的局部特征,因而最早用来处理3D人脸识别问题的是人脸曲面的曲率。Lee禾lJ用平均曲率和高斯曲率值,将人脸深度图中凸的区域分割出来。



如果你是开发者的话,可以去Tel一下colorreco,更好地技术解答。

‘伍’ 什么是人脸表情识别技术

人脸表情识别系统主要包括三个部分:人脸检测与定位、特征提取及表情分类。建立一个FER系统,首先要通过外部器件如摄像头等获取图像,在图像中进行人脸检测,确定输入图像中是否有人脸,在有人脸的情况下确定人脸的位置和大小。这一环节的研究已成为一个独立的方向;然后对人脸进行特征提取,得到反映表情特征的关键信息。最后对得到的表情特征向量进行分类,得到表情所属的类别,如AU组合或基本表情类别

‘陆’ 用VC++6.0和OpenCV实现人脸表情识别难么对于新手要多久能完成

你说的是动态表情识别还是静态表情识别?如果是动态的,首先人脸表情的动态收集就够你喝一壶的了,别说表情识别了。
如果是静态的,只需要自己写一些函数,把图片收集到数据库,对表情的一些特征编写函数就行了。这样相对简单一些,但也需要大量的图片,这里需要的就是图形界面化的知识了。对于一个不会MFC的新手,也很难。如果每天认真钻研,静态的要1个月吧

‘柒’ 人脸识别是识别的什么

人脸识别其实就是生物识别,也就是说你整张脸包括五官,脸型,都会识别的,已经很先进了。

‘捌’ 人脸识别技术的核心算法是什么

人脸识别核心算法包括检测定位、建模、纹理变换、表情变换、模型统计训练、识别匹配等关键步骤,其中最关键的技术包括两部分:人脸检测(Face Detect)和人脸识别(Face Identification)。

检测技术核心称为:迭代动态局部特征分析(SDLFA),它是以国际通用的局域特征分析(LFA)和动态局域特征分析(DLFA)为基础,并且针对现实业务场景进行了全面的算法增强及结果优化,识别技术核心称为:实时面部特征匹配(RFFM),其识别特征数据紧凑,特征算法准确高效,是国际国内独创性的识别技术。

阅读全文

与面部表情识别算法相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:769
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:844
安卓怎么下载60秒生存 浏览:803
外向式文件夹 浏览:240
dospdf 浏览:431
怎么修改腾讯云服务器ip 浏览:392
pdftoeps 浏览:496
为什么鸿蒙那么像安卓 浏览:736
安卓手机怎么拍自媒体视频 浏览:186
单片机各个中断的初始化 浏览:724
python怎么集合元素 浏览:481
python逐条解读 浏览:833
基于单片机的湿度控制 浏览:499
ios如何使用安卓的帐号 浏览:883
程序员公园采访 浏览:812
程序员实战教程要多长时间 浏览:979
企业数据加密技巧 浏览:135
租云服务器开发 浏览:814
程序员告白妈妈不同意 浏览:336
攻城掠地怎么查看服务器 浏览:601