⑴ 二叉搜索树和最优二叉搜索树的时间复杂度各是多少
二叉查找树(BST,Binary Search Tree) ,又名二叉搜索树或二叉检索树,是一颗满足如下条件的树:
1、每个节点包含一个键值
2、每个节点有最多两个孩子
3、对于任意两个节点x和y,它们满足下述搜索性质:
a、如果y在x的左子树里,则key[y] <= key[x]
b、如果y在x的右子树里,则key[y] >= key[x]
最优二叉查找树(Optimal BST,Optimal Binary Search Tree)
最优二叉查找树是使查找各节点平均代价最低的二叉查找树。具体来说就是:给定键值序列 K = <k1 , k2 , . . . , kn >,k1 < k2 <· · · < kn ,其中键值ki ,被查找的概率为pi ,要求以这些键值构建一颗二叉查找树T,使得查找的期望代价最低(查找代价为检查的节点数)。
下面是对于查找期望代价的解释:
对于键值ki , 如果其在构造的二叉查找树里的深度(离开树根的分支数)为depthT(ki ),则搜索该键值的代价= depthT(ki ) +1(需要加上深度为0的树根节点)。由于每个键值被查找的概率分别为pi ,i=1,2,3…,n。所以查找期望代价为:
E[T的查找代价] = ∑i=1~n (depthT(ki ) +1) · pi
时间复杂度
1、穷举
穷举构造最优二叉查找树,其实就是这样的一个问题:
给一个拥有n个数的已排序的节点,可以将其构造成多少种不同的BST(用来找到一个最优的二叉查找树)?
设可以构造成T(n)个,那么枚举每一个元素作为根节点的情况,当第一个元素作为根节点时,其余n-1个构成右子树,无左子树,是n-1情况时的子问题, 共T(n-1)种;当第二个元素作为根节点时,左子树有1个元素,右子树有n-2个元素,根据乘法原理共有T(1)T(n-2)种情况……依此类推得 到:T(n) = T(0)T(n-1) + T(1)T(n-2) + T(2)T(n-3) + ...... + T(n-2)T(1) + T(n-1)T(0);此外,有T(0)=T(1)=1。
下面来求解T(n):
定义函数 f(x) = T(0) + T(1) · x + T(2) · x2 + ......
那么有:
f(x)2 = (T(0)2 ) + (T(0)T(1) + T(1)T(0)) · x + (T(0)T(2) + T(1)T(1) + T(2)T(0)) · x2 + ......
= T(1) + T(2) · x + T(3) · x2 + ......
= (f(x) - T(0)) / x
= (f(x) - 1) / x
这样解方程得到 f(x) = [1 - (1 - 4x)1/2 ] / 2x
右边进行泰勒展开,再与定义式比较最终得到: T(n) = (2n)! / (n!(n+1)!)
然后根据Stirling公式:n! ~ (2πn)1/2 · (n/e)n
于是有(2n)! / n!(n+1)! ~ (4n1/2 · 2n2n ) / (2n1/2 · nn · (2(n+1))1/2 · (n+1)n )
~ 4n · (n+1)-3/2 · (n/(n+1))n
~ 4n · n-3/2
因此最后得到穷举方法构造最优二叉查找树的时间复杂度: T(n) = O(4n · n-3/2 )
2、递归
实际上左右子树是互不影响的,不需要穷举所有左右子树的组合,所以不需要用乘法原理,加法原理就可以了,这样式子变为:
T(n) = T(0) + T(n-1) + T(1) + T(n-2) + T(2) + T(n-3) + ...... + T(n-2) + T(1) + T(n-1) + T(0)
= 2(T(0) + T(1) + T(2) + ...... + T(n-1))
= 3T(n-1)
所以得到T(n) = O(3n ) ,还是指数级的一个算法
3、动态规划
上面得到指数级算法的原因在于,计算了很多重复的子树情况,一些子树的查找代价被计算了很多遍;而一棵树如果是最优二叉搜索树,那么要么它是空树,要么它 的左、右子树也是最优二叉搜索树,因此只需要将子树的查找代价记录下来,采用记忆化搜索或者是自底向上的动态规划的方法,虽然需要消耗一定的空间,但可以 把时间复杂度从指数级降到多项式级,这些空间消耗也是可以接受的。
以下是采用自底向上的解法:
输入:键值序列 K = <k1 , k2 , . . . , kn >,概率序列 P = <p1 , p2 , . . . , pn >
输出:两个二维数组,Price[i][j]表示ki 到kj 构成的最优子树的查找代价,Root[i][j]表示表示ki 到kj 构成的最优子树的根节点位置(用于重构最优二叉查找树)
算法1 :
For 子树大小size = 1 to n
For 子树的起点start = 1 to (n - size + 1) //这样子树的终点即为 end = start + size - 1,长度为size
For 该子树的所有节点作为根节点root = start to end
对于每个root,根据之前计算过的Price数组得到左右最优子树的代价,可直接得到该子树的代价price为:
左右子树的最优子树代价之和 + 所有节点的访问概率之和(因为所有节点都下降了一层)
在内层循环中找到代价最小的price和root分别记录在Price[start][end]和Root[start][end]中
下面分析这个算法的时间复杂度:
由于除了计算出我们最后需要得到的Price和Root二维数组,还产生了部分冗余的子树,因此不能简单的将算法归结为O(n2 )的算法。
对于子树大小为1时,我们考察了n个子树;
对于子树大小为2时,一共产生了(n - 1)个最优子树,但是在我们的每次考察中,都将子树的所有节点作为根节点考虑过一次,因此每得到1个大小为2的子树,我们需要考察2个不同的子树来找到一 个代价最小的,因此最后我们实际上考察了2(n - 1)个子树;
对于子树大小为3时,类似的,我们考察了3(n - 2)个子树;
……
对于子树大小为n时,我们考察了n个子树。
最后,我们一共考察了T(n) = n + 2(n - 1) + 3(n - 2) + ...... + n个子树。
求解这个公式依然可以借用之前的方法,定义函数 f(x) = 1 + 2x + 3x2 + ...... = (1 - x)-2
这样一来 f(x)2 = T(1) + T(2) · x + T(3) · x2 + ......
再借用泰勒展开得到 T(n) = (n + 2)(n + 1)n/6 = O(n3 )
或者把所有项视为n2,则有 T(n) ≤ n2 + n2 + n2 + n2 + ...... = (n+1)n2 ≤ 2n3
把中间n/2项都视为n/4 · 3n/4的话,则有 T(n) ≥ n/2 · n/4 · 3n/4 = (3/32)n3
根据时间复杂度的定义有 T(n) = O(n3 )
下面介绍一个定理,可以借此把动态规划算法的时间复杂度进一步降到O(n2 ),详细的证明参见参考文献:
定理1 :Root[i][j-1] ≤ Root[i][j] ≤ Root[i+1][j] (Root数组定义见算法1)
也就是说,算法1的第3个For就可以不用循环子树中的所有节点了,只要循环另两个子树的根节点之间的范围就可以了。算法如下,红色的为修改的部分:
算法2 :
For 子树大小size = 1 to n
For 子树的起点start = 1 to (n - size + 1) //这样子树的终点即为 end = start + size - 1,长度为size
For 该子树的所有节点作为根节点root = Root[start][end-1] to Root[start+1][end]
对于每个root,根据之前计算过的Price数组得到左右最优子树的代价,可直接得到该子树的代价price为:
左右子树的最优子树代价之和 + 所有节点的访问概率之和(因为所有节点都下降了一层)
在内层循环中找到代价最小的price和root分别记录在Price[start][end]和Root[start][end]中
在分析该算法的时间复杂度时应注意,考察的子树是与考察的内层循环中root数量一一对应的,而当start递进时,前一个root的终点正好等于后一个root的起点(算法中的红色部分),也就是说对于固定的size来说,考察的root的范围加起来应当首位相接 而且至多刚好覆盖 所有节点,因此对于每个size,最多只考察2n个root(这里缩放了一下),因此总共最多考察了2n · n = 2n2 个子树;另一方面,Root数组中每一个值对应得到的一个最优二叉查找树,也即至少需要考察n2 个子树。因此根据定义得到 T(n) = O(n2 )
⑵ 数据结构的排序算法中,哪些排序是稳定的,哪些排序是不稳定的
一、稳定排序算法
1、冒泡排序
2、鸡尾酒排序
3、插入排序
4、桶排序
5、计数排序
6、合并排序
7、基数排序
8、二叉排序树排序
二、不稳定排序算法
1、选择排序
2、希尔排序
3、组合排序
4、堆排序
5、平滑排序
6、快速排序
排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。
做这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
(2)二叉排序树算法空间复杂度扩展阅读:
排序算法的分类:
1、通过时间复杂度分类
计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且坏的性能是 O(n^2)。对于一个排序理想的性能是 O(n)。
而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要 O(nlogn)。
2、通过空间复杂度分类
存储器使用量(空间复杂度)(以及其他电脑资源的使用)
3、通过稳定性分类
稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
⑶ 递归遍历二叉树的时间空间复杂度
时间复杂度和空间复杂度都是O(n),n是结点个数
⑷ 前序遍历二叉树的空间复杂度是多少
因为都是要遍历每一个节点,所以时空复杂度是一样的。 时间复杂度O(n); 空间复杂度O(n); (n为节点数)
⑸ 二叉排序树为什么不用来排序
我觉得是太浪费空间了,如果你需要排序[8,2,10,4]四个元素,你需要在堆区依次malloc四个节点的结构体,然后再把这些结构体构建成一棵二叉排序树,之后中序输出,得到有序的结果。但是这个过程malloc结构体消耗的空间可不少
⑹ 请问构造二叉搜索树的时间复杂度下限是多少
时间复杂度是一个笼统的定义,因为算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。具体而言,时间复杂度可以分为:最坏时间复杂度、最好时间复杂度、平均时间复杂度。
你举的例子是最好情况下的时间复杂度,但是一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。
⑺ 计算机二级C语言主要考点
引用。。:
数据结构与算法
1 算法
算法:是指解题方案的准确而完整的描述。
算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。
算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括:
(1)可行性;
(2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;
(3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义;
(4)拥有足够的情报。
算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。
指令系统:一个计算机系统能执行的所有指令的集合。
基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。
算法的控制结构:顺序结构、选择结构、循环结构。
算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。
算法复杂度:算法时间复杂度和算法空间复杂度。
算法时间复杂度是指执行算法所需要的计算工作量。
算法空间复杂度是指执行这个算法所需要的内存空间。
2 数据结构的基本基本概念
数据结构研究的三个方面:
(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;
(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;
(3)对各种数据结构进行的运算。
数据结构是指相互有关联的数据元素的集合。
数据的逻辑结构包含:
(1)表示数据元素的信息;
(2)表示各数据元素之间的前后件关系。
数据的存储结构有顺序、链接、索引等。
线性结构条件:
(1)有且只有一个根结点;
(2)每一个结点最多有一个前件,也最多有一个后件。
非线性结构:不满足线性结构条件的数据结构。
3 线性表及其顺序存储结构
线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。
在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。
非空线性表的结构特征:
(1)且只有一个根结点a1,它无前件;
(2)有且只有一个终端结点an,它无后件;
(3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。
线性表的顺序存储结构具有以下两个基本特点:
(1)线性表中所有元素的所占的存储空间是连续的;
(2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。
ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。
顺序表的运算:插入、删除。 (详见14--16页)
4 栈和队列
栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。
栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。
栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。
队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。
队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。
队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。
循环队列:s=0表示队列空,s=1且front=rear表示队列满
5 线性链表
数据结构中的每一个结点对应于一个存储单元,这种存储单元称为存储结点,简称结点。
结点由两部分组成:(1)用于存储数据元素值,称为数据域;(2)用于存放指针,称为指针域,用于指向前一个或后一个结点。
2008-2-21 10:07 回复 斗牛士 黛石Sara 2楼在链式存储结构中,存储数据结构的存储空间可以不连续,各数据结点的存储顺序与数据元素之间的逻辑关系可以不一致,而数据元素之间的逻辑关系是由指针域来确定的。
链式存储方式即可用于表示线性结构,也可用于表示非线性结构。
线性链表,head称为头指针,head=null(或0)称为空表,如果是两指针:左指针(llink)指向前件结点,右指针(rlink)指向后件结点。
线性链表的基本运算:查找、插入、删除。
6 树与二叉树
树是一种简单的非线性结构,所有元素之间具有明显的层次特性。
在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称树的根。每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。树的最大层次称为树的深度。
二叉树的特点:(1)非空二叉树只有一个根结点;(2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
二叉树的基本性质:
(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;
(2)深度为m的二叉树最多有2m-1个结点;
(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;
(4)具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分;
(5)具有n个结点的完全二叉树的深度为[log2n]+1;
(6)设完全二叉树共有n个结点。如果从根结点开始,按层序(每一层从左到右)用自然数1,2,….n给结点进行编号(k=1,2….n),有以下结论:
①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为int(k/2);
②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(也无右子结点);
③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。
满二叉树是指除最后一层外,每一层上的所有结点有两个子结点,则k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。
完全二叉树是指除最后一层外,每一层上的结点数均达到最大值,在最后一层上只缺少右边的若干结点。
二叉树存储结构采用链式存储结构,对于满二叉树与完全二叉树可以按层序进行顺序存储。
二叉树的遍历:
(1)前序遍历(dlr),首先访问根结点,然后遍历左子树,最后遍历右子树;
(2)中序遍历(ldr),首先遍历左子树,然后访问根结点,最后遍历右子树;
(3)后序遍历(lrd)首先遍历左子树,然后访问遍历右子树,最后访问根结点。
7 查找技术
顺序查找的使用情况:
(1)线性表为无序表;
(2)表采用链式存储结构。
二分法查找只适用于顺序存储的有序表,对于长度为n的有序线性表,最坏情况只需比较log2n次。
8 排序技术
排序是指将一个无序序列整理成按值非递减顺序排列的有序序列。
交换类排序法:(1)冒泡排序法,需要比较的次数为n(n-1)/2; (2)快速排序法。
插入类排序法:(1)简单插入排序法,最坏情况需要n(n-1)/2次比较;(2)希尔排序法,最坏情况需要o(n1.5)次比较。
选择类排序法:(1)简单选择排序法,
最坏情况需要n(n-1)/2次比较;(2)堆排序法,最坏情况需要o(nlog2n)次比较。
⑻ 数据结构题目求答案
1 、在顺序表(8,11,15,19,25,26,30,33,42,48,50)中,用折半查找法查找关键字值20,需做的关键字比较次数为 4 。
2、抽象数据类型的三大要素为 数据 、 数据之间结构 和 操作 。
3、空格串的长度等于 0 。
4 、栈和队列的区别仅在于 插入&&删除 操作定义不相同。
5、设一个线性表的长度为50,P是指向线性链表的第10个元素,且P->next->next 指向第 11 元素。
6、二叉树的第i层最多有 2^(i-1) 个结点,深度为k的二叉树最多有 2^k-1 个结点。
7、利用MST性质来构造最小生成树的两种常用算法为______PRIM___和___KRUSKAL_______。
8、常见的四类基本数据结构有:__栈______、____队列_____、____树______、______链表_____。(不确定,数据结构太多,究竟要写那几个?)
明天再打
二、判断(对的打∨,错误打×, 10×2 = 20 分)
1、 由于链式存储结构不要求逻辑上相邻的元素在物理位置上也相邻,因此,它具有随机存取的优点( y)。
2、 赫夫曼树是指带权路径长度WPL最小的二叉树。一般而言,在给定条件下构造出的赫夫曼树不是唯一的 (y )。
3、 非空完全二叉树的一个任意结点的右子树深度与其左子树深度的差值或者为0或者为1( y )。
4、 先序遍历二叉排序树可得到一个关键字有序的序列( n) 。
5、 在n个结点的无向图,若边数大于n-1,则该图必是连通图 ( n )。
6、 在n个元素进栈后,它们的出栈顺序和进栈顺序一定正好相反( n )。
7、 往顺序表中插人一个元素,平均要移动大约一半的元素(y )。
8、 类似于算法的时间复杂度,空间复杂度可以作为算法所需存储空间的量度( y )。
9、 赫夫曼树一定是满二叉树( n )。
10、 队列的基本特征是先进后出( n )。
三、选择题(10×2=20分)
1、 有六个元素6,5,4,3,2,1 的顺序进栈,问下列哪一个不是合法的出栈序列?( B )
A. 2 3 4 1 5 6 B. 1 2 4 5 3 6
C. 6 4 5 1 2 3 D. 4 5 3 1 2 6
2、 一棵完全二叉树上有1001个结点,其中叶子结点的个数是B
A. 254 B. 500
C. 250 D. 以上答案都不对
3、线性链表不具有的特点(A ).
A.随机访问 B.不必事先估计所需存储空间大小
C.插入与删除时不必移动元素 D.所需空间与线性表长度成正比
4、向顺序栈中压入新元素时,应当(B ).(此题需看书上栈定义)
A.先移动栈顶指针,再存入元素 B.先存入元素,再移动栈顶指针
C.先后次序无关紧要 D.同时进行
5、 具有65个结点的完全二叉树的高度为( B). (根的层次号为1)
A.8 B.7
C.6 D.5
6、 由权值分别为3,8,10,2,6的叶子结点生成一棵哈夫曼树,则其中非终端结点数为(A )。
A. 2 B. 3
C. 4 D. 5
7、 n个顶点的有向完全图中含有向边的数目最多为( D )
A.n-1 B.n C.n(n-1)/2 D.n(n-1)
8、一个对象序列的排序码为{46,79,56,38,40,84},采用快速排序以位于最左位置的对象为基准而得到的第一次划分结果为(C ).
A.{38,46,79,56,40,84} B.{38,79,56,46,40,84}
C.{40,38,46,56,79,84} D.{38,46,56,79,40,84}
9、长度为11的哈希表中已经填有关键字17,60,29的记录,采用二次探测再散列方法解决冲突,则填入关键字38其地址应该为( D)(哈希函数为h(key)=key mod 11)
A.4 B.5
C.3 D.6
10、在一个无向图中,所有顶点的度数之和等于所有边数的(B )倍.
A.3 B.2
C.1 D.1/2
打完了,为了数据结构考试攒人品~
⑼ 二叉树的层次遍历算法
二叉树的层次遍历算法有如下三种方法:
给定一棵二叉树,要求进行分层遍历,每层的节点值单独打印一行,下图给出事例结构:
之后大家就可以自己画图了,下面给出程序代码:
[cpp] view plain
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
最后给出完成代码的测试用例:124##57##8##3#6##
[cpp] view plain
#include<iostream>
#include<vector>
#include<deque>
using namespace std;
typedef struct tree_node_s {
char data;
struct tree_node_s *lchild;
struct tree_node_s *rchild;
}tree_node_t, *Tree;
void create_tree(Tree *T) {
char c = getchar();
if (c == '#') {
*T = NULL;
} else {
*T = (tree_node_t*)malloc(sizeof(tree_node_t));
(*T)->data = c;
create_tree(&(*T)->lchild);
create_tree(&(*T)->rchild);
}
}
void print_tree(Tree T) {
if (T) {
cout << T->data << " ";
print_tree(T->lchild);
print_tree(T->rchild);
}
}
int print_at_level(Tree T, int level) {
if (!T || level < 0)
return 0;
if (0 == level) {
cout << T->data << " ";
return 1;
}
return print_at_level(T->lchild, level - 1) + print_at_level(T->rchild, level - 1);
}
void print_by_level_1(Tree T) {
int i = 0;
for (i = 0; ; i++) {
if (!print_at_level(T, i))
break;
}
cout << endl;
}
void print_by_level_2(Tree T) {
deque<tree_node_t*> q_first, q_second;
q_first.push_back(T);
while(!q_first.empty()) {
while (!q_first.empty()) {
tree_node_t *temp = q_first.front();
q_first.pop_front();
cout << temp->data << " ";
if (temp->lchild)
q_second.push_back(temp->lchild);
if (temp->rchild)
q_second.push_back(temp->rchild);
}
cout << endl;
q_first.swap(q_second);
}
}
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
int main(int argc, char *argv[]) {
Tree T = NULL;
create_tree(&T);
print_tree(T);
cout << endl;
print_by_level_3(T);
cin.get();
cin.get();
return 0;
}
⑽ n个节点 高为H的二叉树遍历的时间复杂度和空间复杂度
因为都是要遍历每一个节点,所以时空复杂度是一样的。
如果所讨论的网络是Internet或一个Intranet,许多物理网络节点是主机(即通过IP地址来标识的Internet节点)。所有的主机都是物理网络节点。
但是,一些数据链路层设备,如交换机、桥接器和WLAN接入点不拥有IP主机地址(除了有时用于管理目的),这些设备不认为是Internet节点或主机,但它们是物理网络节点和LAN节点。
(10)二叉排序树算法空间复杂度扩展阅读:
电信网络节点:
在固定电话网络中,一个节点可能是公开或私有的电话交换局、远程集线器或计算机,提供了一些智能网络服务。
在蜂窝通信中,交换点和数据库,如基站控制器、归属位置寄存器、网关GPRS支持节点(GGSN)和GPRS服务支持节点(SGSN)都是节点的例子。蜂窝网络基站在此上下文中不被认为是节点。
在有线电视系统(CATV)中,这个术语有较广的语境,通常与光纤节点相关。这可以被定义为由一个公共光纤接收器提供服务的特定地理范围内的家庭或办公地点。一个光纤节点通常使用特定光纤节点所服务的"家园通过"数来描述。