‘壹’ 电缆故障测试仪的测距方法是什么
电缆故障检测仪的测距的方法
方法1:实时专家系统
专家系统是一个具有智能化特点的计算机程序。它的智能化主要表现为在特定领域模仿人类专家思维解决复杂问题的能力。
方法2:利用因果网对电力系统故障定位
因果网络中有四种类型的节点状态、症状、假设和初始原因。状态:表示领域中某部分或功能的状态,如断路器跳闸;症状:表示状态节点的标志,例如断路器跳闸标志是保护动作;假设:表示研究系统的诊断假设,如线路故障假设;初始原因:表示故障的初始原因。可以形成各种节点之间的基本关系。
方法3:小波变换应用在电缆故障测距中
小波分析是数学、信号处理和计算机视觉等几门学科共同发展的结晶。小波分析是通过小波的原型函数数学实现的,其中原型函数可以看作是带通滤波器,因此小波分析也可以通过滤波器实现。关键是找到一个相对带宽恒定的滤波器组,这是滤波器组理论在信号处理中的核心内容。
回复者:华天电力
‘贰’ 有源电力滤波器的三电平
二极管箝位三电平拓扑由日本学者Nabae. A 等人在1980 年提出,经过近30年的发展,广泛应用于电力电子技术的各个领域。二极管箝位三电平拓扑的优势在于,各个开关管承受的反向电压为直流母线电压的一半,可以用较低电压等级的开关管,组成较高电压等级的变流器。已经广泛应用于4.2kV电动机传动系统。通常三电平技术一般应用于电压较高、功率较大的系统中,正是由功率器件耐压有限与变流器系统需求电压较高的矛盾现实决定的。但是我们应该看到二极管箝位三电平拓扑本身固有的一些优势。 (1) 用电压等级较低的开关管构成电压等级较高的变流器,随着功率器件技术的不断发展,市场上已经有6500V的IGBT出售,但是耐压越高的IGBT其开关损耗越高,最高开关频率也变得比较低。3300V以上的IGBT开关频率最高不会超过5kHz,1200V的IGBT的开关损耗远大于600V的IGBT。采用低压IGBT的三电平变流器的开关损耗远低于同样电压等级采用高压IGBT的两电平变流器,同时前者可以达到的开关频率也高于后者。
(2) 能够输出三种电平。二极管箝位三电平变流器能够输出正母线电压、负母线电压以及零电压(简称P、N、O),一般情况下输出电压在P-O、O-N之间跳变,特殊情况下会出现P-N跳变,而两电平变流器只能在P-N之间跳变。也就是说三电平的电压跳变幅度为直流母线电压的一半,而两电平的为直流母线电压。高的电压跳变幅度对并网逆变器或有源电力滤波器带来的是较高的纹波电流,为了抑制纹波电流,需要较大的输出电感和滤波电容,由此带来了较高的纹波电流损耗。同时由于输出滤波电感电容也降低了电流响应速度,或对输出电流的能力产生了一定的限制。对于变频器带来的则是对电机的冲击以及较大的轴电流,严重影响着电机的寿命。另外,较高的电压跳变幅度也会产生严重的电磁干扰,对周边电子设备产生严重危害。而三电平以其固有的优势,在很大程度上解决了上述问题。
随着技术的不断发展,三电平技术被越来越多的人所重视,同时也将其从中压大功率领域,引入到400V的低压小功率应用之中,各个国际知名功率器件厂家推出了大量适应于400V系统应用的集成二极管箝位三电平功率模块,并有逐渐取代传统两电平变流器的趋势。应用于400V领域的成功的三电平产品如下:
(1)2008年日本安川电机推出了Varispeed G7系列通用矢量变频器,其400V产品采用三菱的三电平功率模块,并在应用中取得了巨大成功。
(2)2009年德州和能工业自动化有限公司在自主开发的三电平变流器控制技术的基础上,推出了HEINV系列三电平光伏并网逆变器,前端采用对称BOOST进行最大功率点跟踪,逆变器采用二极管箝位三电平拓扑,两者相互配合,采用Semikron的三电平功率模块,各项指标均优于同类两电平产品。
(3)2006年上海交通大学与上海信元瑞电气有限公司(当时的上海飞平电子有限公司)合作推出了国内唯一一个以能量算法为基础的有源电力滤波器(APF)NEWSINE系列产品,大大的提高了系统的稳定性,随着此后该产品在我国137个大型项目中的实际应用情况反馈,证明和标志了中国FACTS技术已经达到了国际领先水平。 将二极管箝位三电平技术应用于有源电力滤波器领域,国内外很多文献都有涉及,国内外许多专家学者对此都进行了比较深入的研究,也提出了很多新的算法。但是,三电平有源电力滤波器始终没有从实验室走向市场。究其原因,有可能是技术不够成熟,控制算法过于复杂,应用成本高,也可能是企业界对此不够重视,尚未认识到该技术的优势。德州和能工业自动化有限公司通过对三电平技术的深入研究以及对市场趋势的正确把握,在业界首先推出了三电平有源电力滤波器产品。
三电平有源电力滤波器与传统两电平有源电力滤波器相比有以下优势: SPA3系列有源电力滤波器
性能描述
可同时滤除2次到60次谐波
40μs内响应负荷变化,全响应时间小于10ms(1/2周波)
单相动态补偿,不受系统不平衡的影响
3.8 英寸QVGA显示屏,
MODBUS 通讯接口有源电力滤波器
采用速度高达20KHz的IGBT,完美消除谐波
并联安装方式,安装简单、方便,易于扩展,最多可10台并联
优势
SPA3是谐波治理的完美解决方案
动态电流补偿消除谐波和提高功率因数
减少谐波在电缆、开关、变压器中的发热
减少谐波引起的停电故障和时间
提高电源利用率减少运营成本
应用范围
SPA3适用于工业负载场合
SPA4系列有源电力滤波器
性能描述
有效消除因零序谐波产生的中性线电流
可以同时滤除2~25次范围内的全部或选定次数的谐波
单相动态补偿,不受系统不平衡的影响
并联安装方式,安装简单、方便,易于扩展,最多可4台并联
设计选型简单,不需要进行详细的电网分析,只需测量谐波电流的大小
体积轻巧,可壁挂安装
标准的通讯接口,方便的接入用户现有的通讯系统
优势
SPA4系列是谐波治理的完美解决方案
动态电流补偿消除谐波和提高功率因数
减少谐波在电缆、开关、变压器中的发热
减少谐波引起的停电故障和时间
提高电源利用率减少运营成本
应用范围
三相四线适用于商业建筑负载场合 (1)低纹波电流,高电流响应速度
纹波电流和电流响应速度是矛盾的两个指标。作为有源电力滤波器,其基本原理是检测负载谐波,注入反相谐波,以谐波的相互抵消达到滤波的目的。一般的有源电力滤波器是一个电流模式控制的电压源逆变器。输出电流是通过逆变器输出的电压作用在输出电感上产生的。逆变器采用脉冲宽度调制,根据电工的基本原理,纹波电流决定于开关频率、直流母线电压、输出电感的大小,与电流环的控制无关。开关频率越高纹波电流越小、直流母线电压越高,纹波电流越大;输出电感越大,纹波电流越小。而逆变器期望的输出电流是由电流环所控制。有源电力滤波器输出谐波电流,如果按基波50Hz,补偿50次谐波计算,最高谐波频率将达到2.5kHz。有源电力滤波器对电流响应速度有很高的要求。电流响应速度与直流母线电压和输出电感大小有关。直流母线电压越高,电流响应越快;输出电感越大,电流响应越慢。我们期望输出纹波电流越小越好,电流响应速度越快越好,这是一对矛盾。从上述分析可以看出,两电平有源电力滤波器解决这个矛盾的办法只能是提高开关。在某些厂家的两电平有源电力滤波器产品的开关频率已经达到20kHz。但是,开关频率的提高带来的是更高的开关损耗以及驱动损耗,有源电力滤波器的单机容量会受到限制,而对于更高电压等级的有源电力滤波器,高压的IGBT根本就不允许那么高的开关频率。然而,三电平有源电力滤波器从原理上就是一个解决上述问题的方案。三电平逆变器可以输出正、负、零三种电压,在计算纹波电流时,只需按直流母线电压的一半计算。由此,在相同开关频率、相同直流母线电压、相同纹波电流要求的前提下,三电平的输出电感为两电平的一半,同时器件的开关损耗和电感上的纹波损耗也会降低。在计算电流响应速度时,起作用的将是全部直流母线电压,而输出电感的减半,将加快电流的响应速度,增强滤波效果,提高单机容量。
(2)提高系统耐压,应用于较高电压系统
通常国内低压电网为400V,但是对于某些行业,其低压电网会比较高,例如石油钻机传动采用的是600V,矿山用电可能是690V或1140V,而某些行业的电压等级可能更加多样,但一般都是500V以上。如何解决这些行业谐波治理需求,是一个问题。通常为了提高电流响应速度、保证补偿效果,处理谐波的有源电力滤波器比处理基波的变频器或并网逆变器需要更高的直流母线电压。通常两电平逆变器的直流母线电压是交流电网电压有效值的2倍。对于380V应用,直流母线电压一般在700V~750V,而对于600V,直流母线电压需要达到1200V。很多企业的做法是加一个变压器,将其他等级的电压变为400V。通过谐波的变压器是经过特殊设计的,价格比较高,体积也比较大,变压的损耗也会比较大。而采用三电平技术,可以用耐压较低的管子组成耐压较高的变流器系统,可以直接连接到电压较高的电网上,同时保证较好滤波效果和单机容量。
‘叁’ 电力线故障检测
电力电缆根据故障性质可分为低电阻接地或短路故障、高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。
形成电缆故障的原因分析
现将常见的几种主要原因归纳如下
1、机械损伤
机械损伤引起的电缆故障占电缆事故很大的比例。有些机械损伤很轻微,当时并没有造成故障,但在几个月甚至几年后损伤部位才发展成故障。
造成电缆机械损伤的主要有以下几种原因
安装时损伤:在安装时不小心碰伤电缆,机械牵引力过大而拉伤电缆,或电缆过度弯曲而损伤电缆;
直接受外力损坏:在安装后电缆路径上或电缆附近进行城建施工,使电缆受到直接的外力损伤;行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;
2、绝缘受潮
绝缘受潮后引起故障。造成电缆受潮的主要原因有:因接头盒或终端盒结构不密封或安装不良而导致进水;电缆制造不良,金属护套有小孔或裂缝;金属护套因被外物刺伤或腐蚀穿孔;
3、绝缘老化变质
电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。过热会引起绝缘老化变质。电缆内部气隙产生电游离造成局部过热,使绝缘碳化。
电缆故障性质的诊断
所谓诊断电缆故障的性质,就是指确定:故障电阻是高阻还是低阻;是闪络还是封闭性故障;是接地、短路、断线,还是它们的混合;是单相、两相,还是三相故障。
1、电桥法
将被测电缆终端故障相与非故障相端接,电桥两臂分别接故障相和非故障相,通过调节电阻使得电桥达到平衡,通过公式计算出故障点的距离。
2、低压脉冲反射法
测试时向电力电缆的故障相注入低压脉冲。该脉冲沿电缆传播到阻抗不匹配点即故障点时,脉冲产生反射回送到测试点由仪器记录下来,根据发射脉冲与反射脉冲的往返时间差和脉冲在电缆中传播的波速度,便可计算出故障点离测试点的距离。
3、脉冲电流法
脉冲电流法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端和故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。
常用的电缆故障定点方法
1、声测定点法
声测定点法是电缆故障的主要定点方法,主要用于测量高阻与闪络性故障,测量时使用高压设备使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点,缺点是受外界干扰较大。
2、声磁法
在向电缆施加冲击高压信号使故障点放电时,会在电缆的外皮与大地形成的回路中感应出环流来,这一环流在电缆周围产生脉冲磁场,在监听到声音信号的同时,接受到脉冲磁场信号,即可判断该声音是由故障点放电产生的,故障点就在附近。
3、音频感应法
音频感应法一般用于探测故障电阻小于10Ω的低阻故障,探测时,用1 kHz的音频信号发生器向待测电缆通音频电流,发出电磁波;然后在地面上用探头沿被测电缆路径接收电磁场信号,并将之送入放大器进行放大。
在电力电缆故障检测中,应认真、冷静的分析故障的类型和性质,正确应用查找方法和仪器,多积累故障查找经验。目前,电力电缆故障检测的方法中还存在着一些局限性,国内外的电力电缆故障诊断仪器和技术还有一定的差距,随着科技的进步,电力电缆故障诊断技术正在不断提高。
‘肆’ 电力电缆故障测试仪的最远定位距离是多少
电力电缆故障测试仪的最远定位距离是10KM 以上
产品概述
EDHZC-3型电缆故障测试仪是高科技的产物,可用现代经典的直流高压闪络法、冲击高压电感取样法、冲击高压电流取样法、低压脉冲法等多种测试方法,对各种类型动力电缆的短路故障、断路故障、高阻闪络故障、高阻泄漏故障等多种故障进行故障分析、检测、定点。同时也可对控制电缆、市话电缆以及同轴通讯电缆出现的短路、断路故障进行初测,也可对电缆全长进行校对。
技术参数
◆测试距离:单端测试距离≤10千米
◆最短测试距(盲区):小于V/15(米)。其中,V电波在被测电缆中的传播速度
◆测试误差:相对误差:≤±2%
绝对误差:故障点在千米以内≤15米,故障点在千米以上≤20米
◆读数分辨率:V/60米。其中,V电波在被测电缆中的传播速度。如:“油浸纸电缆”,电波传播速度为160m/us仪器的读数最小分辨率为2.66米,即屏幕上光标每移动一点,读数变化2.6米。
◆电源: AC 220V ±10% 50HZ
◆环境条件:
温度:0℃~50℃。
相对湿度:80% ±5%
◆主机体积:350×250×200(mm)
◆主机重量:5kg
主要特点
可测试各种型号不同电压等级的铜、铝芯电力电缆和市话电缆的各种故障。常见的油侵纸电缆、交联乙烯电缆、不滴流电缆和塑料电缆四种常用电力电缆的电波传播速度已经在仪器中预置,电缆长度及故障距离无须人工换算,由仪器自动换算并显示故障距离。
系统组成
◆EDHZC-3型电缆故障测试仪用于电缆故障的粗测,是全套仪器的检测核心;
◆EDHZD型电缆故障定点仪(简称:定点仪)用于电缆故障的精确定位,与传统配置相同;
◆EDHZL型电缆路径仪(简称:路径仪)用于查找地埋电缆的走向和深度,与传统配置相同;
◆大能量高压装置:用于配合闪测仪对所有类型故障进行粗测;配合定点仪对所有类型故障点进行精确定位。有两种配置方式:
◆分体式结构:包括:
◆YD(JZ)系列工频高压试验装置(包括YD(JZ)系列工频高压试验变压器和XC系列调压控制箱两部分,与传统配置相同)
◆脉冲贮能电容(与传统配置相同)
◆二次脉冲同步装置
◆一体化结构: 高压与二次同步脉冲一体化发生装置,包含分体式结构的所有功能。
‘伍’ 有源电力滤波器的基本原理是怎样的能通俗些最好。
有源电力滤波器LB APF的工作原理通俗的讲:就是通过互感器接收到信号,通过高速DSP数字信号处理。经指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。
‘陆’ 有源电力滤波器(APF)概念
有源滤波器现场应用有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源,顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功。
工作原理
有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。
‘柒’ APF电力有源滤波器基本原理
有源滤波器的基本原理:
有源滤波器通过外部电流互感器CT,实时检测负载电流,并通过内部DSP计算,提取出负载电流的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波大小相等、方向相反的电流注入到电网中补偿谐波电流,实现滤波功能。
有源滤波器采用现代电力电子技术,智能化控制,快速动态补偿任意次数的谐波。同时具有谐波补偿、无功补偿、不平衡补偿功能,治理效果可达THDi 0.99
‘捌’ 输电线路故障距离测试仪的参数有哪些
输电线路故障距离测试仪是鼎升电力根据DL/T741-2010试验标准而生产的一款输电线 路测试仪,该输电线路故障距离测试仪用于架空输电线路发生永久性接地(短路)或断路(开路) 时,测量故障点到测量点(变压器)的距离。
该输电线路故障距离测试仪适用于35kV及以上各电压等级的架空输电线,当线路发生永久性单相接地或断线故障时,只要在变电站内对故障线路进行测试就可准确地测出故障距离,确定故障距离,便于抢修人员快速查找故障,缩短抢修时间。DFXL-S 输电线路故障距离测试仪必须在线路停电的基础上才能使用,该输电线路故障距离测试仪具有体积小,携带方便,自带电池交直两用,具有图形和数字显示功能,操作方便。
DFXL-S 输电线路故障距离测试仪的功能特点:
1、功能齐全
DFXL-S输电线路故障距离测试仪测试故障安全、迅速、准确。输电线路故障距离测试仪采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置。
2、测试精度高
该输电线路故障距离测试仪采用高速数据采样技术,A/D采样速度为100MHz,使仪器读取分辨率为1m,探测盲区为1m。
3、智能化程度高
测试结果以波形及数据自动显示在大屏幕液晶显示屏上,判断故障直观。并配有全中文菜单显示操作功能,无需对操作人员作专门的训练。
4、具有波形及参数存储,调出功能
该输电线路故障距离测试仪采用非易失性器件,关机后波形、数据不易失。
5、具有双踪显示功能
可将故障电缆的测试波形与正常波形进行对比,有利于对故障进一步判断。
6、具有波形扩展比例功能
该输电线路故障距离测试仪改变波形比例,可扩展波形进行精确测试。
7、可任意改变双光标的位置,直接显示故障点与测试点的直接距离或相对距离。
8、具有根据不同的被测电缆随时修改传播速度功能。
9、小体积便携式外形,内装可充电的电池供电,方便携带和使用。
DFXL-S 输电线路故障距离测试仪的技术参数:
仪器型号 DFXL-S
仪器名称 输电线路故障距离测试仪、线路故障距离测试仪、输电线路故障距离检测仪、线路故障距离探测仪
最远测试距离 15Km (明线可达100千米)
探测盲区 1m
读数分辨率 1m
功耗 5VA
使用条件 环境温度:0℃~+40℃
体积 275×220×160mm3
重量 1.8kg
文件参考:武汉鼎升电力自动化有限责任公司
‘玖’ 模块化有源电力滤波器
概述
有源电力滤波器能够利用电力电子器件IGBT及其相关电路,对系统谐波源进行跟踪抵消补偿,即按系统的谐波分量发出一个大小相等方向相反的谐波分量,以抵消原谐波分量。APF和无源滤波虽然都是对系统进行谐波滤波,但滤波原理上是不一样的,无源滤波是利用电容与电感的谐振频率将系统谐波源分流。APF是将系统谐波抵消,理论上讲,电容滤波不可能将谐波全部滤除(因为那样所有谐波电流、电压都将从电容柜走,电容柜是吃不消的)。而APF可以将系统谐波全部抵消掉,滤波效果更好。
应用范围
有源电力滤波器应用广泛,主要应用场合有配有变频设备等类似负载的场合、配有不稳定负载的场合、轨道交通、石油化工、海洋石油、汽车制造、机械重工、污水处理、采矿冶炼、市政工程、电信银行、医院、智能建筑、会议中心、游乐中心、水泥、电子、造纸、橡胶、半导体、钢铁厂、有色金属冶炼、电气化铁路等等。
特点
具备快速、完全的故障自检功能,包括市电欠压或过压、母线 过压或过流、风扇故障、功率器件过温、输入保险丝熔断等各种故障自检,所有故障均通过LCD显示屏及LED运行状态灯发出告信号,同时机器自动采取相对应的操作保护系统。 监控系统在供电或断电情况下可保存500条故障记录,便于分析原因及排除故障。
能抑制电压闪变、补偿三相不平衡、提高功率因数。
并联安装方式,安装简单,体积小。
相比较无源滤波器而言,有源电力滤波器不是通过建立一个谐波通路滤波,因此,有源滤波器能够将谐波的畸变功率这部分完整地节约下来,由此保证用户端得到直接的节能收益。
谐波补偿,可同时滤除2~50次谐波电流。
滤波能力在任何负载情况下,补偿后的系统电流THDi<3%;电感上的开关频率为21.6KHz,补偿谐波次数为2-50次。
完善的模块并联技术,支持多台并联运行。
参数
额定谐波补偿容量:50A/100A/150A/200A。
频率:50/60±5Hz(可设置)。
效率:高达97.5%。
存储温度:-20℃~+70℃。
冷却方式:智能冷风。
‘拾’ 如何在输电线路中测量故障距离
根据原理的不同,输电线路故障测距的主要方法分为三类:故障录波分析法、阻抗法、和行波法。1.故障录波分析法 故障录波分析法利用故障时记录得到的各种电气量,事后由技术人员进行综合分析,得到故障位置。随着计算机技术和人工智能技术的发展,故障录波分析法可以通过自动化设备快速完成。但该方法会受到系统阻抗和故障点过渡阻抗的影响,而导致故障测距精度的下降。2.阻抗法 阻抗法建立在工频电气量的基础上,通过建立电压平衡方程,利用数值分析方法求解得到故障点和测量点之间的电抗,由此可以推出故障的大致位置。根据所使用电气量的不同,阻抗法分为单端法和双端法两种。对于单端法,简单来说可以归结为迭代法和解二次方程法。迭代法可能出现伪根,也有可能不收敛。解二次方程法虽然在原理和实质上都比迭代法优越,但仍然有伪根问题。此外,在实际应用中单端阻抗法的精度不高,特别容易受到故障点过渡电阻、对侧系统阻抗、负荷电流的影响。同时由于在计算过程中,算法往往是建立在一个或者几个假设的基础之上,而这些假设常常与实际情况不一致,所以单端阻抗法存在无法消除的原理性误差。但单端法也有其显着优点:原理简单、易于实用、设备投入低、不需要额外的通讯设备。双端法利用线路两端的电气信息量进行故障测距,以从原理上消除过渡电阻的影响。通常双端法可以利用线路两端电流或两端电流、一端电压进行测距,也可以利用两端电压和电流进行故障测距。理论上双端法不受故障类型和故障点过渡电阻的影响,有其优越性。特别是近年来GPS设备和光纤设备的使用,为双端阻抗法的发展提供了技术上的保障。双端法的缺点在于:计算量大、设备投资大、需要额外的同步和通讯设备。3 行波法 行波法利用的原理是当输电线路发生故障时,将会产生向线路两端以接近光速传播的电流和电压行波。通过分析故障行波包含的故障点信息,就可以计算出故障发生的位置。根据使用行波量的不同,行波测距原理分为A型、B型和C型三种:A型原理利用故障发生时产生的初始行波与该行波在故障点的反射波到达测量装置的时间差来进行故障测距;B型原理利用故障发生时产生的初始行波分别到达线路两端测量装置的时间差来进行故障测距;C型原理利用故障发生后,在线路一段施加一个高频或者直流脉冲,根据这个脉冲在故障点和测量装置之间往返的时间差来进行故障测距。这其中,A和C型行波测距方法是单端法,B型行波测距方法是双端法,需要双端信息同步。对于永久性故障,以上三种方法都有很好的适用性,而对于瞬时故障,A、B型方法可以比较准确地工作。行波法不受故障类型和过渡电阻的影响,在理论上有其优越性。在早期的故障测距方法的研究中,行波法受到了广大电力科研人员的重视。1946年C型故障定位装置首先在加拿大通过测试;1947年A型装置在美国投入运行;1948年B型装置在日本投入运行。但由于受当时技术条件的限制,早期研制的行波测距装置,结构复杂、可靠性差、投资大,因此并没有得到大面积的推广应用。输电线路发生故障后,将产生由故障点向线路两端母线传递的暂态行波,包括电压和电流行波,这其中包含着丰富的故障信息。根据暂态行波在传递过程中波速不变的原理,二十世纪五十年代开始就有科学家提出了利用暂态行波进行故障测距的理论。六、七十年代以来,随着行波传输理论研究的深入,相模变换、参数频变、暂态数值计算等方面的新突破,输电线路暂态行波故障测距理论得到了新的发展。特别是近年来随着电子技术和计算机技术的发展,高速采样芯片的应用,行波故障测距显示了巨大的优越性。