导航:首页 > 源码编译 > cfpso算法代码

cfpso算法代码

发布时间:2022-09-09 06:34:16

A. 如图,如何用这个PSO算法或遗传算法来求函数极值,用C语言编写代码

需要很多的子函数 %子程序:新物种交叉操作,函数名称存储为crossover.m function scro=crossover(population,seln,pc); BitLength=size(population,2); pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否 if pcc==1 chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位 scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)] scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)] else scro(1,:)=population(seln(1),:); scro(2,:)=population(seln(2),:); end %子程序:计算适应度函数,函数名称存储为fitnessfun.m function [Fitvalue,cumsump]=fitnessfun(population); global BitLength global boundsbegin global boundsend popsize=size(population,1);%有popsize个个体 for i=1:popsize x=transform2to10(population(i,:));%将二进制转换为十进制 %转化为[-2,2]区间的实数 xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1); Fitvalue(i)=targetfun(xx);%计算函数值,即适应度 end %给适...
望采纳!

B. 粒子群优化算法(PSO)的matlab运行程序~~谢谢大家啦!

%不知道你具体的问题是什么,下面是一个最基本的pso算法解决函数极值问题,如果是一些大型的问题,需要对速度、惯性常数、和自适应变异做进一步优化,希望对你有帮助
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen=200; % 进化次数
sizepop=20; %种群规模

Vmax=1;%速度限制
Vmin=-1;
popmax=5;%种群限制
popmin=-5;

%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=5*rands(1,2); %初始种群
V(i,:)=rands(1,2); %初始化速度
%计算适应度
fitness(i)=fun(pop(i,:)); %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen

for j=1:sizepop

%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;

%种群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;

%自适应变异(避免粒子群算法陷入局部最优)
if rand>0.8
k=ceil(2*rand);%ceil朝正无穷大方向取整
pop(j,k)=rand;
end

%适应度值
fitness(j)=fun(pop(j,:));

%个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end

%群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end

end
yy(i)=fitnesszbest;

end

%% 结果分析
plot(yy)
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');

C. 求教PSO算法优化函数的matlab程序,比如sphere、schaffer、rosenbrock、rastrigin、shubert函数,

呵呵,其实,如果你想知道的MATLAB功能的作用,最好是约帮助下,慢慢的你会发现它非常强大。
中国
帮助呗,那你相信的事实是错误的
帮助腹肌
ABS绝对值。
ABS(X)为X的元素的绝对值时
X是复杂的,ABS(X)为
的复数模量(幅度)十
的元素,这是它的作用,它仅仅是绝对值,例如ABS(-1)= 1,ABS(2)= 2。

D. 咨询一个最简单的PSO算法的程序

%------基本粒子群优化算法(Particle Swarm Optimization)-----------
%------作用:求解优化问题
%------初始格式化----------
format long;
c1=1.4962; %学习因子1
c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=1000; %最大迭代次数
D=10; %搜索空间维数(未知数个数)
N=40; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:N
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
pg=x(1,:); %Pg为全局最优
for i=2:N
if fitness(x(i,:),D)
pg=x(i,:);
end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------
for t=1:MaxDT
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:),D)<p(i)
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg,D);
end
%------最后给出计算结果
disp('*************************************************************')
disp('函数的全局最优位置为:')
Solution=pg
disp('最后得到的优化极值为:')
Result=fitness(pg,D)
disp('*************************************************************')
%------算法结束---

如果想要适应度函数源程序(fitness.m),可以再联系

E. 二进制PSO算法

PSO算法中每一粒子都被看是潜在的最优解,具体实现思路是先将粒子初始化,对于每个粒子都有一个当前位置以及根据适应度值做粒子更新的速度(Kennedy et al.,1995),通过迭代计算得到最优解。PSO粒子速度计算和对应位置更新的原理如式(8.1)、式(8.2)所示:

高光谱遥感影像信息提取技术

式中:xid是粒子;c1,c2是学习因子;w是惯性因子,是粒子速度保持更新之前粒子速度的能力;pid是目前单个粒子最优位置;pgd是整个粒子群目前得到的最优位置;rand是0~1之间的随机数。

二进制PSO首先将粒子初始化为0和1组成的序列。二进制PSO算法是对式(8.2)作些改变,其位置更新如式(8.3)所示(程志刚等,2007):

高光谱遥感影像信息提取技术

式中: 是 Sigmoid 函数。

F. PSO算法里不等式约束怎么编程啊 x1+x2<2这些不等式怎么在程序里实现两个变量的范围求解!急求,必重谢

我来说一种可行但不唯一的方案:
PSO求适应度函数F=f(x1,x2,...,xn)的最小值,如果你想添加比如x1+x2<2这样的不等式,就可以在计算完适应度函数F后,判断变量是否满足你所要求的约束不等式,如果不满足,则可以给适应度函数值加入一个惩罚因子,比如原先函数值是21.5,加入惩罚因子inf(无穷大),就使得适应度函数值变成了无穷大,这就达到了约束的效果;而如果满足约束不等式,就不加入惩罚因子。
就是这样子,不懂追问。

G. pso算法代码怎样用来参数估计

%标准PSO算法源代码(matlab)%标准粒群优化算法程序%2007.1.9Byjxy%测试函数:f(x,y)=100(x^2-y)^2+(1-x)^2,-2.048pop(i,8)%若当前适应值优于个体最优值,则进行个体最优信息的更新pop(i,7)=pop(i,8);%适值更新pop(i,5:6)=pop(i,1:2);%位置坐标更新endend%计算完适应值后寻找当前全局最优位置并记录其坐标ifbest_fitness>min(pop(:,7))best_fitness=min(pop(:,7));%全局最优值gbest_x=pop(find(pop(:,7)==min(pop(:,7))),1);%全局最优粒子的位置gbest_y=pop(find(pop(:,7)==min(pop(:,7))),2);endbest_in_history(exetime)=best_fitness;%记录当前全局最优%实时输出结果%输出当前种群中粒子位置subplot(1,2,1);fori=1:popsizeplot(pop(i,1),pop(i,2),'b*');holdon;endplot(gbest_x,gbest_y,'r.','markersize',20);axis([-2,2,-2,2]);holdoff;subplot(1,2,2);axis([0,gen,-0.00005,0.00005]);ifexetime-1>0line([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);holdon;end%粒子群速度与位置更新%更新粒子速度fori=1:popsizepop(i,3)=rand()*pop(i,3)+c1*rand()*(pop(i,5)-pop(i,1))+c2*rand()*(gbest_x-pop(i,1));%更新速度pop(i,4)=rand()*pop(i,4)+c1*rand()*(pop(i,6)-pop(i,2))+c2*rand()*(gbest_x-pop(i,2));ifabs(pop(i,3))>max_velocityifpop(i,3)>0pop(i,3)=max_velocity;elsepop(i,3)=-max_velocity;endendifabs(pop(i,4))>max_velocityifpop(i,4)>0pop(i,4)=max_velocity;elsepop(i,4)=-max_velocity;endendend%更新粒子位置fori=1:popsizepop(i,1)=pop(i,1)+pop(i,3);pop(i,2)=pop(i,2)+pop(i,4);

H. pso算法的matlab程序

%------基本粒子群优化算法(Particle Swarm Optimization)-----------
%------名称:基本粒子群优化算法(PSO)
%------作用:求解优化问题
%------说明:全局性,并行性,高效的群体智能算法
%------初始格式化--------------------------------------------------
clear all;
clc;
format long;
%------给定初始化条件----------------------------------------------
c1=1.4962;             %学习因子1
c2=1.4962;             %学习因子2
w=0.7298;              %惯性权重
MaxDT=1000;            %最大迭代次数
D=10;                  %搜索空间维数(未知数个数)
N=40;                  %初始化群体个体数目
eps=10^(-6);           %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
for i=1:N
    for j=1:D
        x(i,j)=randn; %随机初始化位置
        v(i,j)=randn; %随机初始化速度
    end
end
%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:N
    p(i)=fitness(x(i,:),D);
    y(i,:)=x(i,:);
end
pg=x(1,:);             %Pg为全局最优
for i=2:N
    if fitness(x(i,:),D)<FITNESS(PG,D)< span>
        pg=x(i,:);
    end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------
for t=1:MaxDT
    for i=1:N
        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
        x(i,:)=x(i,:)+v(i,:);
        if fitness(x(i,:),D)<P(I)< span>
            p(i)=fitness(x(i,:),D);
            y(i,:)=x(i,:);
        end
        if p(i)<FITNESS(PG,D)< span>
            pg=y(i,:);
        end
    end
    Pbest(t)=fitness(pg,D);
end
%------最后给出计算结果
disp('*************************************************************')
disp('函数的全局最优位置为:')
Solution=pg'
disp('最后得到的优化极值为:')
Result=fitness(pg,D)
disp('*************************************************************')
%------算法结束---DreamSun GL & HF-----------------------------------
 
    适应度函数源程序(fitness.m)
function result=fitness(x,D)
sum=0;
for i=1:D
    sum=sum+x(i)^2;
end
result=sum;

I. 求把MATLAB的pso源代码算法修改为 qpso算法 要求返回参数相同

下面的代码是量子群优化算法,你参照着改下:
popsize=20;
MAXITER=2000;
dimension=30;
irange_l=-5.12;
irange_r=5.12;
xmax=10;

sum1=0;
sum2=0;
mean=0;
st=0;
runno=10;
data1=zeros(runno,MAXITER);
for run=1:runno
T=cputime;
x=(irange_r- irange_l)*rand(popsize,dimension,1) + irange_l;

pbest=x;
gbest=zeros(1,dimension);

for i=1:popsize
f_x(i)=f3(x(i,:));
f_pbest(i)=f_x(i);
end

g=min(find(f_pbest==min(f_pbest(1:popsize))));
gbest=pbest(g,:);

f_gbest=f_pbest(g);

MINIUM=f_pbest(g);
for t=1:MAXITER

beta=(1-0.5)*(MAXITER-t)/MAXITER+0.5;
mbest=sum(pbest)/popsize;

for i=1:popsize
fi=rand(1,dimension);
p=fi.*pbest(i,:)+(1-fi).*gbest;
u=rand(1,dimension);
b=beta*(mbest-x(i,:));
v=-log(u);
y=p+((-1).^ceil(0.5+rand(1,dimension))).*b.*v;
x(i,:)=y;
x(i,:)=sign(y).*min(abs(y),xmax);

f_x(i)=f3(x(i,:));
if f_x(i)<f_pbest(i)
pbest(i,:)=x(i,:);
f_pbest(i)=f_x(i);
end
if f_pbest(i)<f_gbest
gbest=pbest(i,:);
f_gbest=f_pbest(i);
end
MINIUM=f_gbest;
end
data1(run,t)=MINIUM;
if MINIUM>1e-007
mean=t;
end
end
sum1=sum1+mean;
sum2=sum2+MINIUM;
%MINIUM
time=cputime-T;
st=st+time;

end
av1=sum1/10; %输出平均收验代数
av2=sum2/10; %输出平均最优解
st/10 %就是最后anw输出的解

J. 哪位大神指点一下粒子群优化算法(PSO)的输入和输入分别是什么

PSO的接口楼上已经说了,我跟你说下关于你的图像聚类的问题怎么选适应度函数,聚类的目的一般是选出C个质心,采用近邻原则通过C个质心对样本点进行聚类。
所以关于你的问题,首先要确定你想聚类成几类,假设为C类
初始化每个粒子的位置向量为C个质心的位置(假设你的样本维数D,初始化每一个粒子为一个C*D的向量)
适应度函数:计算每个样本点到C个质心的位置,选择最短的距离,假设d,计算所有样本的距离d相加,这就是适应度函数

阅读全文

与cfpso算法代码相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:768
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:843
安卓怎么下载60秒生存 浏览:802
外向式文件夹 浏览:235
dospdf 浏览:430
怎么修改腾讯云服务器ip 浏览:387
pdftoeps 浏览:493
为什么鸿蒙那么像安卓 浏览:735
安卓手机怎么拍自媒体视频 浏览:185
单片机各个中断的初始化 浏览:723
python怎么集合元素 浏览:480
python逐条解读 浏览:832
基于单片机的湿度控制 浏览:498
ios如何使用安卓的帐号 浏览:882
程序员公园采访 浏览:811
程序员实战教程要多长时间 浏览:974
企业数据加密技巧 浏览:134
租云服务器开发 浏览:813
程序员告白妈妈不同意 浏览:335
攻城掠地怎么查看服务器 浏览:600