导航:首页 > 源码编译 > 行测中估算法的方法

行测中估算法的方法

发布时间:2022-09-09 13:25:29

‘壹’ 公务员考试资料分析题有没有快速答题技巧啊

资料分析十大速算技巧★【速算技巧一:估算法
要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑
能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算
方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方
式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决
定了"估算"时候的精度要求。
★【速算技巧二:直除法】
“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:
一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;
二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:
一、简单直接能看出商的首位;
二、通过动手计算能看出商的首位;
三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
根据首两位为1.5*得到正确答案为C。
★【速算技巧三:截位法】
所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或
者只取前几位),从而得到精度足够的计算结果"的速算方式。
在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减(同时注意
下一位是否需要进位与借位),直到得到选项要求精度的答案为止。
在乘法或者除法中使用"截位法"时,为了使所得结果尽可能精确,需要注意截位近
似的方向:
一、 扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;
二、 扩大(或缩小)被除数,则需扩大(或缩小)除数。
如果是求"两个乘积的和或者差(即a×b±c×d)",应该注意:

三、 扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;
四、 扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。
到底采取哪个近似方向由相近程度和截位后计算难度决定。
一般说来,在乘法或者除法中使用"截位法"时,若答案需要有N位精度,则计算过程
的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消
情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方
向的要求。所以应用这种方法时,需要考生在做题当中多加熟悉与训练误差的把握
,在可以使用其它方式得到答案并且截位误差可能很大时,尽量避免使用乘法与除
法的截位法。
【速算技巧四:化同法】
要点:所谓"化同法",是指"在比较两个分数大小时,将这两个分数的分子或分母化为相同
或相近,从而达到简化计算"的速算方式。一般包括三个层次:

一、 将分子(或分母)化为完全相同,从而只需要再看分母(或分子)即可;
二、 将分子(或分母)化为相近之后,出现"某一个分数的分母较大而分子较小"或
"某一个分数的分母较小而分子较大"的情况,则可直接判断两个分数的大小。
三、 将分子(或分母)化为非常接近之后,再利用其它速算技巧进行简单判定。
事实上在资料分析试题当中,将分子(或分母)化为完全相同一般是不可能达到的
,所以化同法更多的是"化为相近"而非"化为相同"。
★【速算技巧五:差分法】

“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。

适用形式:
两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
基础定义:
在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。
“差分法”使用基本准则——
“差分数”代替“大分数”与“小分数”作比较:
1、若差分数比小分数大,则大分数比小分数大;
2、若差分数比小分数小,则大分数比小分数小;
3、若差分数与小分数相等,则大分数与小分数相等。
比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1>313/51.7。
特别注意:
一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;
二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。
★【速算技巧六:插值法】
"插值法"是指在计算数值或者比较数大小的时候,运用一个中间值进行"参照比较"
的速算方式,一般情况下包括两种基本形式:
一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以
进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。
比如说A与B的比较,如果可以找到一个数C,并且容易得到A>C,而B<C,即可以判定
A>B。
二、在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以
容易的找到A与B之间的一个数C,比如说A<CC,则我们知道
f=B(另外一种情况类比可得)。
★【速算技巧七:凑整法】
"凑整法"是指在计算过程当中,将中间结果凑成一个"整数"(整百、整千等其它方
便计算形式的数),从而简化计算的速算方式。"凑整法"包括加/减法的凑整,也包
括乘/除法的凑整。

在资料分析的计算当中,真正意义上的完全凑成"整数"基本上是不可能的,但由于
资料分析不要求绝对的精度,所以凑成与"整数"相近的数是资料分析"凑整法"所真
正包括的主要内容。
★【速算技巧八:放缩法】
要点:
"放缩法"是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果
进行大胆的"放"(扩大)或者"缩"(缩小),从而迅速得到待比较数字大小关系的
速算方式。
要点:
若A>B>0,且C>D>0,则有:

1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C

这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做题当中
经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考
场之上容易漏掉的数学关系,其本质可以用"放缩法"来解释。
★【速算技巧九:增长率相关速算法】
计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。

两年混合增长率公式:
如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:
r1+r2+r1× r2

增长率化除为乘近似公式:
如果第二期的值为A,增长率为r,则第一期的值A′:
A′=A/1+r≈A×(1-r)
(实际上左式略大于右式,r越小,则误差越小,误差量级为r2)

平均增长率近似公式:
如果N年间的增长率分别为r1、r2、r3……rn,则平均增长率:
r≈r1+r2+r3+……rn/n
(实际上左式略小于右式,增长率越接近,误差越小)
求平均增长率时特别注意问题的表述方式,例如:
1.“从2004年到2007年的平均增长率”一般表示不包括2004年的增长率;
2.“2004、2005、2006、2007年的平均增长率”一般表示包括2004年的增长率。

“分子分母同时扩大/缩小型分数”变化趋势判定:
1.A/B中若A与B同时扩大,则①若A增长率大,则A/B扩大②若B增长率大,则A/B缩小;A/B中若A与B同时缩小,则①若A减少得快,则A/B缩小②若B减少得快,则A/B扩大。
2.A/A+B中若A与B同时扩大,则①若A增长率大,则A/A+B扩大②若B增长率大,则A/A+B缩小;A/A+B中若A与B同时缩小,则①若A减少得快,则A/A+B缩小②若B减少得快,则A/A+B扩大。

多部分平均增长率:
如果量A与量B构成总量“A+B”,量A增长率为a,量B增长率为b,量“A+B”的增长率为r,则A/B=r-b/a-r,一般用“十字交叉法”来简单计算:
A:a r-b A
r =
B:b a-r B
注意几点问题:
1.r一定是介于a、b之间的,“十字交叉”相减的时候,一个r在前,另一个r在后;
2.算出来的A/B=r-b/a-r是未增长之前的比例,如果要计算增长之后的比例,应该在这个比例上再乘以各自的增长率,即A′/B′=(r-b)×(1+a)/(a-r)×(1+b)。
等速率增长结论:
如果某一个量按照一个固定的速率增长,那么其增长量将越来越大,并且这个量的数值成“等比数列”,中间一项的平方等于两边两项的乘积。
★【速算技巧十:综合速算法】
“综合速算法”包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速算方式,但这些速算方式仍然是提高计算速度的有效手段。

平方数速算:
牢记常用平方数,特别是11~30以内数的平方,可以很好地提高计算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900

尾数法速算:
因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时候多强调首位估算,而尾数往往是微不足道的。因此资料分析当中的尾数法只适用于未经近似或者不需要近似的计算之中。历史数据证明,国考试题资料分析基本上不能用到尾数法,但在地方考题的资料分析当中,尾数法仍然可以有效地简化计算。
错位相加/减:
A×9型速算技巧:A×9=A×10-A;如:743×9=7430-743=6687
A×9.9型速算技巧:A×9.9=A×10+A÷10;如:743×9.9=7430-74.3=7355.7
A×11型速算技巧:A×11=A×10+A;如:743×11=7430+743=8173
A×101型速算技巧:A×101=A×100+A; 如:743×101=74300+743=75043

乘/除以5、25、125的速算技巧:
A×5型速算技巧:A×5=10A÷2;A÷5型速算技巧:A÷5=0.1A×2
例8739.45×5=87394.5÷2=43697.25
36.843÷5=3.6843×2=7.3686

A× 25型速算技巧:A×25=100A÷4;A÷ 25型速算技巧:A÷25=0.01A×4
例7234×25=723400÷4=180850
3714÷25=37.14×4=148.56

A×125型速算技巧:A×125=1000A÷8;A÷125型速算技巧:A÷125=0.001A×8
例8736×125=8736000÷8=1092000
4115÷125=4.115×8=32.92

减半相加:
A×1.5型速算技巧:A×1.5=A+A÷2;
例3406×1.5=3406+3406÷2=3406+1703=5109

“首数相同尾数互补”型两数乘积速算技巧:
积的头=头×(头+1);积的尾=尾×尾
例:“23×27”,首数均为“2”,尾数“3”与“7”的和是“10”,互补
所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621
这种题是没有意义的
请补充完善 可以先查阅下资料

‘贰’ 公务员考试,行测怎样估算自己的得分

同求解。国考的计分权威回答:资料分析 数学运算 部分1分/题。常识图形推理0.5分,言语0.6.推理0.8.。。这是大概的算法,但我相信这肯定不是国考真正计分的算法! 但是,在平时国考模拟、真题的练习中,你在早上9.00--11点用115(5分钟是凃答案的)分钟做完题。完全按照真实考试的状态!然后按以上通俗算法计分。在做完15套以上以后,计算平均分,这个平均分就是你国考的真实水平了,真正考的时候分数在正负3分上下。这可以作为你国考的行测参考成绩(几个人真实事例验证,其中我一个朋友。16套预测题平均分55.5,国考55.8--2011年,其他几个相差不到2分)。当然省考不一样,题目要简单些,计分方法也没有官方解答,而且各地不一样,但总的来说省考的参考计分可以2种方法计算:1,数学运算和资料分析1分每题,然后剩下的分数除以剩下的总题数,求每题平均分。然后你做完题以后可按此方法计算,当然这个算法的前提是你必须做完本省模拟,真题的15套题以上,然后用这个算法计算平均分,这个平均分基本代表你省考水平,相似度95%以上!另外还有种方法就是:每套题的正确总数/题目总数 ,得到一个百分比。最后计算15套题以上的百分比平均数。这个也能代表你的真实水平!总而言之,省考国考都没有绝对官方出的正确统分方法。按以上方法,个人觉得最能掌握自己真实水平!
弱弱的问下:你考哪儿的公务员?打字真累!回答完毕,请楼主赐分

‘叁’ 经验分享:省考资料分析速算方法小结

资料分析作为公务员考试内容中至关重要的一个部分,分值大、时间紧,如何又快又准地解题就成为了一个至关重要的课题。以下为大家总结几种常用的速算方法。

1.估算法。"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方式多样,需要各位考生在实战中多加训练与掌握。进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时的精度要求。

2.直除法。直除法是指在比较或者计算较复杂分数时,通过"直接相除"的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有"极易操作"性。我们只需要按照适当的直除原则进行操作即可。

3.截位法。所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果"的速算方式。 在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与借位),直到得到选项求精度的答案为止。

4.差分法。"差分法"是在比较两个分数大小时,用"直除法"或者"化同法"等其它速算方式难以解决 时可以采取的一种速算方式。

5.插值法。"插值法"是指在计算数值或者比较数大小的时,运用一个中间值进行"参照比较"的速算方式。

6.放缩法。"放缩法"是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果进行大胆的"放"(大)或者"缩"(缩小) ,从而迅速得到待比较数字大小关系的速算方式。

总之,资料分析可以采取的速算方法有很多,需要大量的练习才能熟能生巧。

‘肆’ 估算的方法有哪些

1、四舍五入

四舍五入里的四舍是:1、2、3、4,五入是:5、6、7、8、9。

采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。因此,四舍五入是一种精确度的计数保留法。

2、进一法

进一法是去掉多余部分的数字后,在保留部分的最后一个数字上加1后得到的近似值。

例如:每条麻袋能装粮食75公斤,现在有1380公斤粮食,需要麻袋多少条?用1380除以75,商为18,余数为4,只用18条麻袋不可能装完,因此必须采用进一法,用19条麻袋才能装完。

3、去尾法

去尾法是把舍去的部分去掉后,所保留的数不变。如,把π=3.14159……用去尾法截取到千分位时的值为3.141。

例如:每件儿童衣服要用布1. 2米,现有布17.6米,可以做这样的衣服多少件?用17.6除以1.2,商为14,余数为0.66。剩下的布只能做0.66件,不够做成一件衣服的,只能采用去尾法,可以做成这样的衣服14件。

(4)行测中估算法的方法扩展阅读

在应用科学计算机进行施工运算时,常遇到一种情形:在答案的整数左边,有时连着好几个小数点数字 。

如:小边255 除大边1005=tan0.2537313。

类似这种情形,如果作为参考用的tan值,经常带着这些小数点进行大小边计算,将显得繁琐。因此,为适当地去除类似小数点,又不影响实际尺寸的准确性,我在这里介绍数学 中的四舍五入计算法。

通常,木工所接触的制作图,都采用公制,且以毫米(mm)为单位,制作的面积从几十毫米到十多二十米不等,只要配合实际尺寸,对小数点作适当的删除,又能使误差不超过一 毫米,就应该施行四舍五入法。

以毫米为单位来说,假如它在第三位,我们就在第四位作四舍五入,先看第四位:如果是4或者比四小,就把它舍去;如果它是5或者比五大,也把它舍去,但要向它的左边单位上进1,这种方法就叫四舍五入法。

再举上面的例子,用tan值乘大边,以便求出小边值。假设tan值不变,大边值改为3000,这时,以毫米为单位来算,它就在第四位,我们就取tan值小数点后的四位数作为运算值就 够了。第五位是3,因为小于4,所以将它舍去,即:0.2537乘 3000=761.1,答案的小数点这时小于1mm应把它删去,只取761mm。

但是在四舍五入中,舍去的几率有九分之四,而进一的几率有九分之五,两者不等。故有“四舍六入”的说法,在这之中,若是5需舍入,若前一位数是奇数,则进一,若是偶数,则去尾。

‘伍’ 2018国家公务员考试行测:资料分析估算法是什么

2018公务员行测资料分析估算法


我们在解答资料分析题时,要尽量采用估算法,要注意不要每题都只列出式子,最后拿计算器一算,那样到考试当中没有计算器的时候相当于每题都要蒙答案,效果最差。

例如:2006年全省参加企业养老保险人数964.4万人,比上年末增加87.6万人;企业实际缴费人数722万人,企业养老保险基金收入318.2亿元,支出192.3亿元,累计结余453.7亿元,比上年末增加125.9亿元,基金支付能力稳定上升,支付能力达26个月。参加失业保险人数504.4万人,比上年末增长13.4%;基本医疗保险参保人数730.6万人,比上年末增长14.2%;工伤保险参保人数604万人,比上年末增长33.3%。

与上年末相比,2006年末,以下四个项目人数增加最多的是:

A. 参加企业养老保险人数 B. 参加失业保险人数

C. 基本医疗保险参保人数 D. 工伤保险参保人数

根据材料选项A为87.6万人,选项B为 ,选项C为 ,选项D为 ,选项D中33.3% 所以D约为151万人,选项B和C直接观察可判断肯定也小于151万,所以答案选D。

除了采用估算法,答题时对于较难的验证类题目,要注意放弃原则,这类题即使在时间充足的情况下得分率也较低,在考试当中是最应该放弃的题目类型。

例如:

某港口2007年生产统计表

能够从上述资料中推出的是:

A.2006年第一季度,月均港口货物吞吐量超过800万吨

B.2007年第一季度,港口集装箱吞吐量高于全年平均水平

C.2006年4-12月间港口集装箱吞吐量低于6万TEU的月份有3个

D.2007年第四季度的所有月份港口货物吞吐量均比上一年同期有所下降

这道题如果四个选项全部验证计算量相当大,并且题目迷惑性较强具有相当大的难度,在考试当中如果我们有一定的时间来计算,也要注意最好从最后一个选项开始验证,因为一般这类题目的答案很少出现在A或B当中,例如此题先验证D选项,发现其为正确的,则ABC不需要验证,可以直接选出答案D。

‘陆’ 行测资料分析常用公式有哪些

1、增长类

增长率=现期-基期/基期=增长量/基期,现期=基期*(1+增长率),基期=现期/1+增长率,

2、间隔增长率

已知第一年的量A,第二年和第三年的增长率a%和b%,求第三年的比第一年的增长率。

则第三年的值:A(1+a%)(1+b%),第三年比第一年的增长率是r=a%+b%+a%b%,第三期的量是第一期倍数=1+a%+b%+a%b%。如果第三期已知,求第一期,也就是基期,则基期=现期/1+增长率=第三期/1+a%+b%+a%b%。

3、比重

部分占整体的比重,如整体是A,增长率a%,部分是B,增长率是b%,则比重=B/A,基期:整体=A/1+a%,部分=B/1+b%。部分占整体比重=B/A*(1+a%/1+b%),比重之差:B/A*(b%-a%/1+b%),比重增长率=b%-a%/1+a%。

解题思路:现期和基期两种比重之差,秒杀办法:

先看上升或者下降,如果b%-a%大于0.则部分增长率大于整体增长率,则判断为上升,排除一部分错误答案,

再看b%-a%的值,约等于多少,则选项值<b%-a%,秒杀。

4、平均数

总体/个数=b%/a%。其中,基期,平均数之差,以及平均数增长率,都与比重公式相同,考的最多的是平均数增长率。

5、混合增长率

整体C=A部分+B部分,例如:进出口额=进口额+出口额,整体的增长率在部分增长率之间,a%>c%>b%。

解题思路:已知两个部分量和增长率,求整体增长率的方法:

根据a%>c%>b%,可得,排除一部分错误答案。

再算出两个部分的基期增长率,以及中间值a%+b%/2

根据基期值谁大,则c%的值就靠近谁,在最大的基期值和a%+b%/2之间。

算精确值,十字交叉法,c-b/a-c=A/B,

6、年均增长量

平均每年增长的数量,年均增长率:平均每年增长的速度。

年均增长量=总增长量/年份=现期-基期/年份差,年均增长率=(根号下A/B)-1,

7、等速增长

不同的时间内,增长速度相同。

解题思路:已知A2010年的量,B2011年的量,等速增长率r,求C2012年的量。

先算出(B-A)r%的差距,如果差距不大。

用C≈2B-A,求得数值,选项则是比该数值稍微大一点。则是C≈2B-A+(B-A)r%。

‘柒’ 估算的方法是什么

题目要求或实际应题
估算方法
1.四舍五入
例题:2的算数平方根(保留到0.01)
解:根号2=1.414.....≈1.41
2.进一法
例题:一支笔2.6元,四支需多少钱(保留到整数)
解:2.6*4=10.4元≈11元
如果四舍五入的话是10元,是不够的,所以是要进上去的
3.去尾法
例题:有20元,买3元一支的笔,可卖多少支?
解:20/3=6.6666....支≈6支
如果四舍五入的话是7支,买不到,所以是要去掉的

‘捌’ 公务员考试,估算法,口诀: 小值优先——当口诀无法同时满足两个数的四舍五入时,优先对首个非零数字

  1. 示例:


  2. 进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。

‘玖’ 公务员考试中的资料分析计算量太大 有什么技巧吗

【速算技巧一:估算法】

要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。

所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

估算的方式多样,需要各位考生在实战中多加训练与掌握。进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时候的精度要求。

【速算技巧二:直除法】

“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。

“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。

“直除法”从题型上一般包括两种形式:

一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

“直除法”从难度深浅上来讲一般分为三种梯度:

一、简单直接能看出商的首位;

二、通过动手计算能看出商的首位;

三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

根据首两位为1.5*得到正确答案为C。

【速算技巧三:截位法】

所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果"的速算方式。

在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与借位),直到得到选项要求精度的答案为止。

在乘法或者除法中使用"截位法"时,为了使所得结果尽可能精确,需要注意截位近似的方向:

一、 扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;

二、 扩大(或缩小)被除数,则需扩大(或缩小)除数。

如果是求"两个乘积的和或者差(即a×b±c×d)",应该注意:

三、 扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;

四、 扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。

到底采取哪个近似方向由相近程度和截位后计算难度决定。

(9)行测中估算法的方法扩展阅读:

资料分析是公务员考试行政职业能力测验科目中的一种考试题型,主要测查报考者对各种形式的文字、图表等资料的综合理解与分析加工能力,这部分内容通常由统计性的图表、数字及文字材料构成。

行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。

资料分析主要测查报考者对各种形式的文字、图表等资料的综合理解与分析加工能力,这部分内容通常由统计性的图表、数字及文字材料构成。

阅读全文

与行测中估算法的方法相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:768
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:843
安卓怎么下载60秒生存 浏览:802
外向式文件夹 浏览:235
dospdf 浏览:430
怎么修改腾讯云服务器ip 浏览:387
pdftoeps 浏览:492
为什么鸿蒙那么像安卓 浏览:735
安卓手机怎么拍自媒体视频 浏览:185
单片机各个中断的初始化 浏览:723
python怎么集合元素 浏览:480
python逐条解读 浏览:832
基于单片机的湿度控制 浏览:498
ios如何使用安卓的帐号 浏览:882
程序员公园采访 浏览:811
程序员实战教程要多长时间 浏览:974
企业数据加密技巧 浏览:134
租云服务器开发 浏览:813
程序员告白妈妈不同意 浏览:335
攻城掠地怎么查看服务器 浏览:600