1. 递归算法是怎么运行的
递归算法是把问题转化为规模缩小了的同类问题的子问题。然后递归调用函数(或过程)来表示问题的解。
一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数)。
递归算法
递归算法流程
递归过程一般通过函数或子过程来实现。递归方法:在函数或子过程的内部,直接或者间接地调用自己的算法。
算法简析
递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方,采用递归编写
递归能使程序变得简洁和清晰。
2. 什么是递归算法
递归算法就是一个函数通过不断对自己的调用而求得最终结果的一种思维巧妙但是开销很大的算法。
比如:
汉诺塔的递归算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}
void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。
3. java中递归算法是什么怎么算的
一、递归算法基本思路:
Java递归算法是基于Java语言实现的递归算法。递归算法是一种直接或者间接调用自身函数或者方法的算法。递归算法实质是把问题分解成规模缩小的同类问题的子问题,然后递归调用方法表示问题的解。递归往往能给我们带来非常简洁非常直观的代码形式,从而使我们的编码大大简化,然而递归的思维确实跟我们的常规思维相逆的,通常都是从上而下的思维问题,而递归趋势从下往上的进行思维。
二、递归算法解决问题的特点:
【1】递归就是方法里调用自身。
【2】在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
【3】递归算法代码显得很简洁,但递归算法解题的运行效率较低。所以不提倡用递归设计程序。
【4】在递归调用的过程中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等,所以一般不提倡用递归算法设计程序。
【5】在做递归算法的时候,一定把握出口,也就是做递归算法必须要有一个明确的递归结束条件。这一点是非常重要的。其实这个出口就是一个条件,当满足了这个条件的时候我们就不再递归了。
三、代码示例:
publicclassFactorial{
//thisisarecursivefunction
intfact(intn){
if(n==1)return1;
returnfact(n-1)*n;
}}
publicclassTestFactorial{publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
Factorialfactorial=newFactorial();
System.out.println("factorial(5)="+factorial.fact(5));
}
}
代码执行流程图如下:
此程序中n=5就是程序的出口。
4. 阶乘n的递归算法是什么
思路:递归求阶乘函数,如果输入的参数等于1则返回1,否则返回n乘以该函数下次递归。
参考代码:
#include<stdio.h>
intfun(intn)
{
if(n==1||n==0)return1;//如果参数是0或者1返回1
returnn*fun(n-1);//否则返回n和下次递归的积
}
intmain()
{
intn;
scanf("%d",&n);
printf("%d
",fun(n));
return0;
}
/*
5
120
*/
5. 计算机算法中的递归法与选择排序法是什么请细讲
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
选择排序法 是对 定位比较交换法 的一种改进。在讲选择排序法之前我们先来了解一下定位比较交换法。为了便于理解,设有10个数分别存在数组元素a[0]~a[9]中。定位比较交换法是由大到小依次定位a[0]~a[9]中恰当的值(和武林大会中的比武差不多),a[9]中放的自然是最小的数。如定位a[0],先假定a[0]中当前值是最大数,a[0]与后面的元素一一比较,如果a[4]更大,则将a[0]、a[4]交换,a[0]已更新再与后面的a[5]~a[9]比较,如果a[8]还要大,则将a[0]、a[8]交换,a[0]又是新数,再与a[9]比较。一轮比完以后,a[0]就是最大的数了,本次比武的武状元诞生了,接下来从a[1]开始,因为状元要休息了,再来一轮a[1]就是次大的数,也就是榜眼,然后从a[2]开始,比出探花,真成比武大会了,当必到a[8]以后,排序就完成了。
下面给大家一个例子:
mai()
{
int a[10];
int i,j,t;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
for ( j = i + 1; j < 10; j ++)
if ( a[ i ] < a[ j ] ) { t = a[ i ]; a[ i ] = a[ j ]; a[ j ] = t; } /*打不过就要让出头把交椅,不过a[ i ]比较爱面子,不好意思见 a[ j ],让t帮忙*/
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*显示排序后的结果*/
}
好啦,罗嗦了半天总算把定位比较排序法讲完了,这个方法不错,容易理解,就是有点麻烦,一把椅子换来换去,哎~
所以就有了下面的选择排序法,开始的时候椅子谁也不给,放在一边让大家看着,找个人k记录比赛结果,然后发椅子。具体来讲呢就是,改进定位比较排序法,但是这个改进只是一部分,比较的次数没变,该怎么打还是怎么打,就是不用换椅子了。每次外循环先将定位元素的小标i值记录到K,认为a[k]是最大元素其实i=k还是a[ i ]最大,a[k]与后面的元素一一比较,该交换的也是也不换,就是把K的值改变一下就完了,最后在把a[k]与a[ i ]交换,这样a就是最大的元素了。然后进入下一轮的比较。选择排序法与定位比较排序法相比较,比的次数没变,交换的次数减少了。
下面也写个例子:
main()
{
int a[10];
int i,j,t,k;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
{ k = i; /*裁判AND记者实时追踪报道比赛情况*/
for ( j = i + 1; j < 10; j ++)
if ( a[ k ] < a[ j ] ) k = j;
t = a[ i ]; a[ i ] = a[ k ]; a[ k ] = t; /* t 发放奖品*/
}
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*显示排序后的结果*/
}
6. C语言递归算法的原理是什么
调用自身,完成重复性工作。也就是在函数或子过程的内部,直接或者间接地调用自己的算法。
如:3! = 2! * 3 2! = 1! * 2 1! = 1
所以;
s(n) {
if (n == 1 || n == 0)
return (1);
else
return (n * s(n-1));
}
7. 递归算法是什么
递归算法(英语:recursion algorithm)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。
递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。
计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。
8. 递归算法的原理
递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写
递归能使程序变得简洁和清晰.
9. 什么是递归算法
递归算法就是一个函数通过不断对自己的调用而求得最终结果的一种思维巧妙但是开销很大的算法。
比如:
汉诺塔的递归算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}
void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。
10. VB递归算法原理
对于函数z(a),当a=1时,即z(1)=x,z(2)=y,在本例中a=5,则
z(5)=z(3)+z(4)
z(3)=z(1)+z(2)=x+y;
z(4)=z(2)+z(3)=y+z(3)=y+x+y
所以z(5)=(x+y)+(y+x+y)=2x+3y=13
递归调用的原理就是递推,知道函数的参数满足z=x或者z=y为止,也就是知道满足参数等于1或者等于2为止。
不知道这样回答能让你理解吗,有问题的话网络Hi我吧,呵呵