#encoding=utf-8
importrandom
fromimport
defdirectInsertSort(seq):
"""直接插入排序"""
size=len(seq)
foriinrange(1,size):
tmp,j=seq[i],i
whilej>0andtmp<seq[j-1]:
seq[j],j=seq[j-1],j-1
seq[j]=tmp
returnseq
defdirectSelectSort(seq):
"""直接选择排序"""
size=len(seq)
foriinrange(0,size-1):
k=i;j=i+1
whilej<size:
ifseq[j]<seq[k]:
k=j
j+=1
seq[i],seq[k]=seq[k],seq[i]
returnseq
defbubbleSort(seq):
"""冒泡排序"""
size=len(seq)
foriinrange(1,size):
forjinrange(0,size-i):
ifseq[j+1]<seq[j]:
seq[j+1],seq[j]=seq[j],seq[j+1]
returnseq
def_divide(seq,low,high):
"""快速排序划分函数"""
tmp=seq[low]
whilelow!=high:
whilelow<highandseq[high]>=tmp:high-=1
iflow<high:
seq[low]=seq[high]
low+=1
whilelow<highandseq[low]<=tmp:low+=1
iflow<high:
seq[high]=seq[low]
high-=1
seq[low]=tmp
returnlow
def_quickSort(seq,low,high):
"""快速排序辅助函数"""
iflow>=high:return
mid=_divide(seq,low,high)
_quickSort(seq,low,mid-1)
_quickSort(seq,mid+1,high)
defquickSort(seq):
"""快速排序包裹函数"""
size=len(seq)
_quickSort(seq,0,size-1)
returnseq
defmerge(seq,left,mid,right):
tmp=[]
i,j=left,mid
whilei<midandj<=right:
ifseq[i]<seq[j]:
tmp.append(seq[i])
i+=1
else:
tmp.append(seq[j])
j+=1
ifi<mid:tmp.extend(seq[i:])
ifj<=right:tmp.extend(seq[j:])
seq[left:right+1]=tmp[0:right-left+1]
def_mergeSort(seq,left,right):
ifleft==right:
return
else:
mid=(left+right)/2
_mergeSort(seq,left,mid)
_mergeSort(seq,mid+1,right)
merge(seq,left,mid+1,right)
#二路并归排序
defmergeSort(seq):
size=len(seq)
_mergeSort(seq,0,size-1)
returnseq
if__name__=='__main__':
s=[random.randint(0,100)foriinrange(0,20)]
prints
print" "
printdirectSelectSort((s))
printdirectInsertSort((s))
printbubbleSort((s))
printquickSort((s))
printmergeSort((s))
2. python几种经典排序方法的实现
class SortMethod:
'''
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
插入算法把要排序的数组分成两部分:
第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置)
第二部分就只包含这一个元素(即待插入元素)。
在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
'''
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
'''
希尔排序 (Shell Sort) 是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 DL.Shell 于 1959 年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
'''
def shell_sort(lists):
# 希尔排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
'''
冒泡排序重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
'''
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
temp = lists[j]
lists[j] = lists[i]
lists[i] = temp
return lists
'''
快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
'''
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
'''
直接选择排序
第 1 趟,在待排序记录 r[1] ~ r[n] 中选出最小的记录,将它与 r[1] 交换;
第 2 趟,在待排序记录 r[2] ~ r[n] 中选出最小的记录,将它与 r[2] 交换;
以此类推,第 i 趟在待排序记录 r[i] ~ r[n] 中选出最小的记录,将它与 r[i] 交换,使有序序列不断增长直到全部排序完毕。
'''
def select_sort(lists):
# 选择排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
temp = lists[min]
lists[min] = lists[i]
lists[i] = temp
return lists
'''
堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。
可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即 A[PARENT[i]] >= A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
'''
# 调整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
# 创建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
# 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
'''
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法 (Divide and Conquer) 的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:
比较 a[i] 和 a[j] 的大小,若 a[i]≤a[j],则将第一个有序表中的元素 a[i] 复制到 r[k] 中,并令 i 和 k 分别加上 1;
否则将第二个有序表中的元素 a[j] 复制到 r[k] 中,并令 j 和 k 分别加上 1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到 r 中从下标 k 到下标 t 的单元。归并排序的算法我们通常用递归实现,先把待排序区间 [s,t] 以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间 [s,t]。
'''
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 归并排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
'''
基数排序 (radix sort) 属于“分配式排序” (distribution sort),又称“桶子法” (bucket sort) 或 bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序。
其时间复杂度为 O (nlog(r)m),其中 r 为所采取的基数,而 m 为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
---------------------
作者:CRazyDOgen
来源:CSDN
原文:https://blog.csdn.net/jipang6225/article/details/79975312
版权声明:本文为博主原创文章,转载请附上博文链接!
3. python sorted使用什么算法
python中的sorted排序,真的是高大上,用的Timsort算法。
https://www.hu.com/question/36280272
上面有详细的文章介绍
4. python列表中的sort方法是用什么排序方法
把原列表中的元素顺序从左至右的重新存放,而不会对列表中的参数进行排序整理。
如果需要对列表中的参数进行整理,就需要用到列表的另一种排序方式sort正序排序。
5. python使用冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。
def bubbleSort(arr):
n = len(arr)
# 遍历所有数组元素
for i in range(n):
# Last i elements are already in place
for j in range(0, n-i-1):
if arr[j] > arr[j+1] :
arr[j], arr[j+1] = arr[j+1], arr[j]
arr = [64, 34, 25, 12, 22, 11, 90]
bubbleSort(arr)
print ("排序后的数组:")
for i in range(len(arr)):
print ("%d" %arr[i])
6. Python中既然有了sort()可以排序,那还有必要实现其他排序算法吗例如堆排序,快速排序
肯定有必要的,sort是基于快速排序,但我们编程的时候不单单要会用,而且要知道原理
此外,有些情况下冒泡、选择排序的时间复杂度也不差,而且实现简单,更适用于一些小数据量的情况,这时候这些排序反而有优势
而且有时候数据结构不一定是整型等, 是我们自定义的类型,要对其中的某个成员变量排序,知道原理就更容易理解
7. python2.7的sort函数默认采用什么排序算法,适用于怎样的数列的排序
:
那关键字参数key和reverse还在吗?我是python3.3.5的。
自定义排序用key关键字
>>>
a=['abc','abcd','ab']
>>>
a.sort(key=len)
#使用len函数返回的大小
8. python2.7的sort函数默认采用什么排序算法,适用于怎样的数列的排序
: 那关键字参数key和reverse还在吗?我是python3.3.5的。
自定义排序用key关键字 >>> a=['abc','abcd','ab'] >>> a.sort(key=len) #使用len函数返回的大小
9. python sort()用法
Python中的sort()方法用于数组排序,下面以实例形式对此加以详细说明:
一、基本形式
列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不可修改的。
x=[4,6,2,1,7,9]x.sort()
printx#[1,2,4,6,7,9]
如果需要一个排序好的副本,同时保持原有列表不变,怎么实现呢
x=[4,6,2,1,7,9]
y=x[:]
y.sort()
printy#[1,2,4,6,7,9]
printx#[4,6,2,1,7,9]
注意:y = x[:] 通过分片操作将列表x的元素全部拷贝给y,如果简单的把x赋值给y:y = x,y和x还是指向同一个列表,并没有产生新的副本。
另一种获取已排序的列表副本的方法是使用sorted函数:
x=[4,6,2,1,7,9]
y=sorted(x)
printy#[1,2,4,6,7,9]
printx#[4,6,2,1,7,9]
sorted返回一个有序的副本,并且类型总是列表,如下:
printsorted('Python')#['P','h','n','o','t','y']
二、自定义比较函数
可以定义自己的比较函数,然后通过参数传递给sort方法:
defcomp(x,y):
ifx<y:
return1
elifx>y:
return-1
else:
return0
nums=[3,2,8,0,1]
nums.sort(comp)
printnums#降序排序[8,3,2,1,0]
nums.sort(cmp)#调用内建函数cmp,升序排序
printnums#降序排序[0,1,2,3,8]
三、可选参数
sort方法还有两个可选参数:key和reverse
1、key在使用时必须提供一个排序过程总调用的函数:
x=['mmm','mm','mm','m']
x.sort(key=len)
printx#['m','mm','mm','mmm']
2、reverse实现降序排序,需要提供一个布尔值:
y=[3,2,8,0,1]
y.sort(reverse=True)
printy#[8,3,2,1,0]