⑴ A*算法介绍
姓名:车文扬 学号:16020199006
【嵌牛导读】:A*算法的逐步详解
【嵌牛鼻子】:启发式算法
【嵌牛提问】:A*算法的原理是什么?
【嵌牛正文】:
A*算法
路径规划是指的是机器人的最优路径规划问题,即依据某个或某些优化准则(如工作代价最小、行走路径最短、行走时间最短等),在工作空间中找到一个从起始状态到目标状态能避开障碍物的最优路径。机器人的路径规划应用场景极丰富,最常见如游戏中NPC及控制角色的位置移动,网络地图等导航问题,小到家庭扫地机器人、无人机大到各公司正争相开拓的无人驾驶汽车等。
目前路径规划算法分为:
A*算法原理:
在计算机科学中,A*算法作为Dijkstra算法的扩展,因其高效性而被广泛应用于寻路及图的遍历,如星际争霸等游戏中就大量使用。在理解算法前,我们需要知道几个概念:
搜索区域(The Search Area):图中的搜索区域被划分为了简单的二维数组,数组每个元素对应一个小方格,当然我们也可以将区域等分成是五角星,矩形等,通常将一个单位的中心点称之为搜索区域节点(Node)。
开放列表(Open List):我们将路径规划过程中待检测的节点存放于Open List中,而已检测过的格子则存放于Close List中。
父节点(parent):在路径规划中用于回溯的节点,开发时可考虑为双向链表结构中的父结点指针。
路径排序(Path Sorting):具体往哪个节点移动由以下公式确定:F(n) = G + H 。G代表的是从初始位置A沿着已生成的路径到指定待检测格子的移动开销。H指定待测格子到目标节点B的估计移动开销。
启发函数(Heuristics Function):H为启发函数,也被认为是一种试探,由于在找到唯一路径前,我们不确定在前面会出现什么障碍物,因此用了一种计算H的算法,具体根据实际场景决定。在我们简化的模型中,H采用的是传统的曼哈顿距离(Manhattan Distance),也就是横纵向走的距离之和。
如下图所示,绿色方块为机器人起始位置A,红色方块为目标位置B,蓝色为障碍物。
我们把要搜寻的区域划分成了正方形的格子。这是寻路的第一步,简化搜索区域。这个特殊的方法把我们的搜索区域简化为了2 维数组。数组的每一项代表一个格子,它的状态就是可走(walkalbe)或不可走(unwalkable) 。现用A*算法寻找出一条自A到B的最短路径,每个方格的边长为10,即垂直水平方向移动开销为10。因此沿对角移动开销约等于14。具体步骤如下:
从起点 A 开始,把它加入到一个由方格组成的open list(开放列表) 中,这个open list像是一个购物清单。Open list里的格子是可能会是沿途经过的,也有可能不经过。因此可以将其看成一个待检查的列表。查看与A相邻的8个方格 ,把其中可走的 (walkable) 或可到达的(reachable) 方格加入到open list中。并把起点 A 设置为这些方格的父节点 (parent node) 。然后把 A 从open list中移除,加入到close list(封闭列表) 中,close list中的每个方格都是不需要再关注的。
如下图所示,深绿色的方格为起点A,它的外框是亮蓝色,表示该方格被加入到了close list 。与它相邻的黑色方格是需要被检查的,他们的外框是亮绿色。每个黑方格都有一个灰色的指针指向他们的父节点A。
下一步,我们需要从open list中选一个与起点A相邻的方格。但是到底选择哪个方格好呢?选F值最小的那个。我们看看下图中的一些方格。在标有字母的方格中G = 10 。这是因为水平方向从起点到那里只有一个方格的距离。与起点直接相邻的上方,下方,左方的方格的G 值都是10 ,对角线的方格G 值都是14 。H值通过估算起点到终点( 红色方格) 的Manhattan 距离得到,仅作横向和纵向移动,并且忽略沿途的障碍。使用这种方式,起点右边的方格到终点有3 个方格的距离,因此H = 30 。这个方格上方的方格到终点有4 个方格的距离( 注意只计算横向和纵向距离) ,因此H = 40 。
比较open list中节点的F值后,发现起点A右侧节点的F=40,值最小。选作当前处理节点,并将这个点从Open List删除,移到Close List中。
对这个节点周围的8个格子进行判断,若是不可通过(比如墙,水,或是其他非法地形)或已经在Close List中,则忽略。否则执行以下步骤:
若当前处理节点的相邻格子已经在Open List中,则检查这条路径是否更优,即计算经由当前处理节点到达那个方格是否具有更小的 G值。如果没有,不做任何操作。相反,如果G值更小,则把那个方格的父节点设为当前处理节点 ( 我们选中的方格 ) ,然后重新计算那个方格的 F 值和 G 值。
若当前处理节点的相邻格子不在Open List中,那么把它加入,并将它的父节点设置为该节点。
按照上述规则我们继续搜索,选择起点右边的方格作为当前处理节点。它的外框用蓝线打亮,被放入了close list 中。然后我们检查与它相邻的方格。它右侧的3个方格是墙壁,我们忽略。它左边的方格是起点,在close list 中,我们也忽略。其他4个相邻的方格均在open list 中,我们需要检查经由当前节点到达那里的路径是否更好。我们看看上面的方格,它现在的G值为14 ,如果经由当前方格到达那里,G值将会为20( 其中10为从起点到达当前方格的G值,此外还要加上从当前方格纵向移动到上面方格的G值10) ,因此这不是最优的路径。看图就会明白直接从起点沿对角线移动到那个方格比先横向移动再纵向移动要好。
当把4个已经在open list 中的相邻方格都检查后,没有发现经由当前节点的更好路径,因此不做任何改变。接下来要选择下一个待处理的节点。因此再次遍历open list ,现在open list中只有7 个方格了,我们需要选择F值最小的那个。这次有两个方格的F值都是54,选哪个呢?没什么关系。从速度上考虑,选择最后加入open list 的方格更快。因此选择起点右下方的方格,如下图所示。
接下来把起点右下角F值为54的方格作为当前处理节点,检查其相邻的方格。我们发现它右边是墙(墙下面的一格也忽略掉,假定墙角不能直接穿越),忽略之。这样还剩下 5 个相邻的方格。当前方格下面的 2 个方格还没有加入 open list ,所以把它们加入,同时把当前方格设为他们的父亲。在剩下的 3 个方格中,有 2 个已经在 close list 中 ( 一个是起点,一个是当前方格上面的方格,外框被加亮的 ) ,我们忽略它们。最后一个方格,也就是当前方格左边的方格,检查经由当前方格到达那里是否具有更小的 G 值。没有,因此我们准备从 open list 中选择下一个待处理的方格。
不断重复这个过程,直到把终点也加入到了open list 中,此时如下图所示。注意在起点下方2 格处的方格的父亲已经与前面不同了。之前它的G值是28并且指向它右上方的方格。现在它的G 值为20 ,并且指向它正上方的方格。这是由于在寻路过程中的某处使用新路径时G值更小,因此父节点被重新设置,G和F值被重新计算。
那么我们怎样得到实际路径呢?很简单,如下图所示,从终点开始,沿着箭头向父节点移动,直至回到起点,这就是你的路径。
A*算法总结:
1. 把起点加入 open list 。
2. 重复如下过程:
a. 遍历open list ,查找F值最小的节点,把它作为当前要处理的节点,然后移到close list中
b. 对当前方格的 8 个相邻方格一一进行检查,如果它是不可抵达的或者它在close list中,忽略它。否则,做如下操作:
□ 如果它不在open list中,把它加入open list,并且把当前方格设置为它的父亲
□ 如果它已经在open list中,检查这条路径 ( 即经由当前方格到达它那里 ) 是否更近。如果更近,把它的父亲设置为当前方格,并重新计算它的G和F值。如果你的open list是按F值排序的话,改变后你可能需要重新排序。
c. 遇到下面情况停止搜索:
□ 把终点加入到了 open list 中,此时路径已经找到了,或者
□ 查找终点失败,并且open list 是空的,此时没有路径。
3. 从终点开始,每个方格沿着父节点移动直至起点,形成路径。
⑵ 有哪些应用于移动机器人路径规划的算法
机器人家上了解到,在二维二值地图(FREE or OCCUPIED)场景下进行路径规划的方法。我看之前有同学在回答的时候配上了这幅图:
这幅图上的算法罗列的还是很全面的,体现了各个算法的出生顺序。但是并不能很好的对他们进行一个本质的分类。刚刚那位同学说的graph-based和sampling-based的分类方法我感觉有点概念重叠不能够对规划算法进行这样的分类,下面通过自己这一年多的研究和实践对规划算法进行一个简单的分类:
这幅图上的算法罗列的还是很全面的,体现了各个算法的出生顺序。但是并不能很好的对他们进行一个本质的分类。刚刚那位同学说的graph-based和sampling-based的分类方法我感觉有点概念重叠不能够对规划算法进行这样的分类,下面通过自己这一年多的研究和实践对规划算法进行一个简单的分类:
两大类:
1. 完备的(complete)
2. 基于采样的(sampling-based)又称为概率完备的
一 完备的规划算法
A*算法
所谓完备就是要达到一个systematic的标准,即:如果在起始点和目标点间有路径解存在那么一定可以得到解,如果得不到解那么一定说明没有解存在。
这一大类算法在移动机器人领域通常直接在occupancy grid网格地图上进行规划(可以简单理解成二值地图的像素矩阵)以深度优先寻路算法、广度优先寻路算法、Dijkstra(迪杰斯特拉)算法为始祖,以A*算法(Dijstra算法上以减少计算量为目的加上了一个启发式代价)最为常用,近期的Theta*算法是在A*算法的基础上增加了line-of-sight优化使得规划出来的路径不完全依赖于单步的栅格形状(答主以为这个算法意义不大,不就是规划了一条路径再简单平滑了一下么)。
完备的算法的优势在与它对于解的捕获能力是完全的,但是由此产生的缺点就是算法复杂度较大。这种缺点在二维小尺度栅格地图上并不明显,但是在大尺度,尤其是多维度规划问题上,比如机械臂、蛇形机器人的规划问题将带来巨大的计算代价。这样也直接促使了第二大类算法的产生。
二 基于采样的规划算法
RRT-connect算法
这种算法一般是不直接在grid地图进行最小栅格分辨率的规划,它们采用在地图上随机撒一定密度的粒子来抽象实际地图辅助规划。如PRM算法及其变种就是在原始地图上进行撒点,抽取roadmap在这样一个拓扑地图上进行规划;RRT以及其优秀的变种RRT-connect则是在地图上每步随机撒一个点,迭代生长树的方式,连接起止点为目的,最后在连接的图上进行规划。这些基于采样的算法速度较快,但是生成的路径代价(可理解为长度)较完备的算法高,而且会产生“有解求不出”的情况(PRM的逢Narrow space卒的情况)。这样的算法一般在高维度的规划问题中广泛运用。
三 其他规划算法
除了这两类之外还有间接的规划算法:Experience-based(Experience Graph经验图算法)算法:基于经验的规划算法,这是一种存储之前规划路径,建立知识库,依赖之进行规划的方法,题主有兴趣可以阅读相关文献。这种方法牺牲了一定的空间代价达到了速度与完备兼得的优势。此外还有基于广义Voronoi图的方法进行的Fast-marching规划,类似dijkstra规划和势场的融合,该方法能够完备地规划出位于道路中央,远离障碍物的路径。答主最近也在研究此类算法相关的工作。
APF(人工势场)算法
至于D* 、势场法、DWA(动态窗口法)、SR-PRM属于在动态环境下为躲避动态障碍物、考虑机器人动力学模型设计的规划算法。
⑶ 路径规划有几种方法
路径规划模块需要根据局部环境感知、可用的全局车道级路径、相关交通规则,提供能够将车辆引导向目的地(或目的点)的路径。路径规划可分为全局路径规划方法、局部路径规划方法和混合路径规划方法三种。
⑷ A*算法用于路径规划,有什么缺点
缺点:A*算法通过比较当前路径栅格的8个邻居的启发式函数值F来逐步确定下一个路径栅格,当存在多个最小值时A*算法不能保证搜索的路径最优。
A*算法;A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好。A*[1] (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法。注意是最有效的直接搜索算法。之后涌现了很多预处理算法(ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。公式表示为: f(n)=g(n)+h(n),其中 f(n) 是从初始点经由节点n到目标点的估价函数,g(n) 是在状态空间中从初始节点到n节点的实际代价,h(n) 是从n到目标节点最佳路径的估计代价。保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。如果 估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
⑸ 全局路径规划算法
全局路径规划,主要算法有
1、网格法、
2、拓扑法、
3、视图法。
⑹ 流程规划区路径选择及依据
摘要 您好,很高兴为您解答该问题!
⑺ 蚁群算法用于路径规划时的优缺点
蚁群算法受起止点位置和障碍分布的影响,环境复杂时蚂蚁容易陷入不可行点,甚至出现路径迂回和死锁。
⑻ 以下不属于SLAM算法的是哪一项
CRB-SLAM
SLAM算法,简单来说,就是机器人要实现智能化需要完成的三个任务:定位、建图、路径规划,这套流程,就是SLAM技术,没有CRB-SLAM算法。
⑼ 局部路径规划算法
局部路径规划,常用的算法有栅格法、人工势场法、遗传算法、空间搜索法、层次法、动作行为法、Dijkstra算法、Lee算法、Floyd算法等
⑽ 常见的路径规划方法有那些
最速下降法、部分贪婪算法, Dijkstra算法、Floyed算法、SPFA算法(Bellman_Ford的改进算法)、A*算法、D*算法、图论最短算法,遗传算法、元胞自动机、免疫算法、禁忌搜索、模拟退火、人工神经网络、蚁群算法、粒子群算法等