导航:首页 > 源码编译 > python图像增强算法

python图像增强算法

发布时间:2022-09-13 10:18:31

‘壹’ OpenCV python 系列教程4 - OpenCV 图像处理(上)

学习目标:

OpenCV 中有 150 多种色彩空间转化的方法,这里只讨论两种:

HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。不同的软件使用不同的规模。如果要比较 OpenCV 值和它们,你需要标准化这些范围。

HSV 和 HLV 解释

运行结果:该段程序的作用是检测蓝色目标,同理可以检测其他颜色的目标
结果中存在一定的噪音,之后的章节将会去掉它

这是物体跟踪中最简单的方法。一旦你学会了等高线的函数,你可以做很多事情,比如找到这个物体的质心,用它来跟踪这个物体,仅仅通过在相机前移动你的手来画图表,还有很多其他有趣的事情。

菜鸟教程 在线 HSV-> BGR 转换

比如要找出绿色的 HSV 值,可以使用上面的程序,得到的值取一个上下界。如上面的取下界 [H-10, 100, 100],上界 [H+10, 255, 255]
或者使用其他工具如 GIMP

学习目标:

对图像进行阈值处理,算是一种最简单的图像分割方法,基于图像与背景之间的灰度差异,此项分割是基于像素级的分割

threshold(src, thresh, maxval, type[, dst]) -> retval, dst

计算图像小区域的阈值。所以我们对同一幅图像的不同区域得到不同的阈值,这给我们在不同光照下的图像提供了更好的结果。

三个特殊的输入参数和一个输出参数

adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst

opencv-threshold-python

OpenCV 图片集

本节原文

学习目标:

OpenCV 提供两种变换函数: cv2.warpAffine 和 cv2.warpPerspective

cv2.resize() 完成缩放

文档说明

运行结果

说明 : cv2.INTER_LINEAR 方法比 cv2.INTER_CUBIC 还慢,好像与官方文档说的不一致? 有待验证。

速度比较: INTER_CUBIC > INTER_NEAREST > INTER_LINEAR > INTER_AREA > INTER_LANCZOS4

改变图像的位置,创建一个 np.float32 类型的变换矩阵,

warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst

运行结果:

旋转角度( )是通过一个变换矩阵变换的:

OpenCV 提供的是可调旋转中心的缩放旋转,这样你可以在任何你喜欢的位置旋转。修正后的变换矩阵为

这里

OpenCV 提供了 cv2.getRotationMatrix2D 控制
cv2.getRotationMatrix2D(center, angle, scale) → retval

运行结果

cv2.getAffineTransform(src, dst) → retval

函数关系:
egin{bmatrix} x'_i y'_i end{bmatrix}egin{bmatrix} x'_i y'_i end{bmatrix} =

其中

运行结果:图上的点便于观察,两图中的红点是相互对应的

透视变换需要一个 3x3 变换矩阵。转换之后直线仍然保持笔直,要找到这个变换矩阵,需要输入图像上的 4 个点和输出图像上的对应点。在这 4 个点中,有 3 个不应该共线。通过 cv2.getPerspectiveTransform 计算得到变换矩阵,得到的矩阵 cv2.warpPerspective 变换得到最终结果。

本节原文

平滑处理(smoothing)也称模糊处理(bluring),是一种简单且使用频率很高的图像处理方法。平滑处理的用途:常见是用来 减少图像上的噪点或失真 。在涉及到降低图像分辨率时,平滑处理是很好用的方法。

图像滤波:尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。

消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段,在高频段,有用的信息会被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。

滤波的目的:抽出对象的特征作为图像识别的特征模式;为适应图像处理的要求,消除图像数字化时混入的噪声。

滤波处理的要求:不能损坏图像的轮廓及边缘等重要信息;图像清晰视觉效果好。

平滑滤波是低频增强的空间滤波技术,目的:模糊和消除噪音。

空间域的平滑滤波一般采用简单平均法,即求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑效果越好,但是邻域过大,平滑也会使边缘信息的损失的越大,从而使输出图像变得模糊。因此需要选择合适的邻域。

滤波器:一个包含加权系数的窗口,利用滤波器平滑处理图像时,把这个窗口放在图像上,透过这个窗口来看我们得到的图像。

线性滤波器:用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。
低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器、陷波滤波器

boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst

均值滤波是方框滤波归一化后的特殊情况。归一化就是要把处理的量缩放到一个范围内如 (0,1),以便统一处理和直观量化。非归一化的方框滤波用于计算每个像素邻近内的积分特性,比如密集光流算法中用到的图像倒数的协方差矩阵。

运行结果:

均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临近像素(比如以目标像素为中心的周围8(3x3-1)个像素,构成一个滤波模板,即 去掉目标像素本身 )。再用模板中的全体像素的平均值来代替原来像素值。即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) ,其中m为该模板中包含当前像素在内的像素总个数。

均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst

结果:

高斯滤波:线性滤波,可以消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过 加权平均 后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

高斯滤波有用但是效率不高。

高斯模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。 高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。

一维零均值高斯函数为: 高斯分布参数 决定了高斯函数的宽度。

高斯噪声的产生

GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

线性滤波容易构造,并且易于从频率响应的角度来进行分析。

许多情况,使用近邻像素的非线性滤波会得到更好的结果。比如在噪声是散粒噪声而不是高斯噪声,即图像偶尔会出现很大值的时候,用高斯滤波器进行图像模糊时,噪声像素不会被消除,而是转化为更为柔和但仍然可见的散粒。

中值滤波(Median filter)是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,该方法在去除脉冲噪声、椒盐噪声‘椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。’的同时又能保留图像边缘细节,

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点,对于 斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise) 来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。

中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。

与均值滤波比较:

说明:中值滤波在一定条件下,可以克服线性滤波器(如均值滤波等)所带来的图像细节模糊,而且对滤除脉冲干扰即图像扫描噪声最为有效。在实际运算过程中并不需要图像的统计特性,也给计算带来不少方便。 但是对一些细节多,特别是线、尖顶等细节多的图像不宜采用中值滤波。

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合 图像的空间邻近度和像素值相似度 的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。

双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差 sigma-d ,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。 但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

运行结果

学习目标:

形态变换是基于图像形状的一些简单操作。它通常在二进制图像上执行。

膨胀与腐蚀实现的功能

侵蚀的基本思想就像土壤侵蚀一样,它会侵蚀前景物体的边界(总是试图保持前景为白色)。那它是做什么的?内核在图像中滑动(如在2D卷积中)。只有当内核下的所有像素都是 1 时,原始图像中的像素( 1 或 0 )才会被视为 1 ,否则它将被侵蚀(变为零)

erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

与腐蚀的操作相反。如果内核下的至少一个像素为“1”,则像素元素为“1”。因此它增加了图像中的白色区域或前景对象的大小增加。通常,在去除噪音的情况下,侵蚀之后是扩张。因为,侵蚀会消除白噪声,但它也会缩小我们的物体。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的物体区域会增加。它也可用于连接对象的破碎部分

‘贰’ Python如何图像识别

首先,先定位好问题是属于图像识别任务中的哪一类,最好上传一张植物叶子的图片。因为目前基于深度学习的卷积神经网络(CNN)确实在图像识别任务中取得很好的效果,深度学习属于机器学习,其研究的范式,或者说处理图像的步骤大体上是一致的。

1、第一步,准备好数据集,这里是指,需要知道输入、输出(视任务而定,针对你这个问题,建议使用有监督模型)是什么。你可以准备一个文件夹,里面存放好植物叶子的图像,而每张图像对应一个标签(有病/没病,或者是多类别标签,可能具体到哪一种病)。
具体实现中,会将数据集分为三个:训练集(计算模型参数)、验证集(调参,这个经常可以不需要实现划分,在python中可以用scikit-learn中的函数解决。测试集用于验证模型的效果,与前面两个的区别是,模型使用训练集和验证集时,是同时使用了输入数据和标签,而在测试阶段,模型是用输入+模型参数,得到的预测与真实标签进行对比,进而评估效果。
2、确定图像识别的任务是什么?

图像识别的任务可以分为四个:图像分类、目标检测、语义分割、实例分割,有时候是几个任务的结合。
图像分类是指以图像为输入,输出对该图像内容分类的描述,可以是多分类问题,比如猫狗识别。通过足够的训练数据(猫和狗的照片-标签,当然现在也有一系列的方法可以做小样本训练,这是细节了,这里并不敞开讲),让计算机/模型输出这张图片是猫或者狗,及其概率。当然,如果你的训练数据还有其它动物,也是可以的,那就是图像多分类问题。
目标检测指将图像或者视频中的目标与不感兴趣的部分区分开,判断是否存在目标,并确定目标的具体位置。比如,想要确定这只狗所佩戴的眼睛的位置,输入一张图片,输出眼睛的位置(可视化后可以讲目标区域框出来)。

看到这里,应该想想植物叶子诊断疾病的问题,只需要输入一整张植物叶子的图片,输出是哪种疾病,还是需要先提取叶子上某些感兴趣区域(可能是病变区域),在用病变区域的特征,对应到具体的疾病?
语义分割是当今计算机视觉领域的关键问题之一,宏观上看,语义分割是一项高层次的任务。其目的是以一些原始图像作为输入,输出具有突出显示的感兴趣的掩膜,其实质上是实现了像素级分类。对于输入图片,输出其舌头区域(注意可以是不规则的,甚至不连续的)。

而实例分割,可以说是在语义分割的基础上,在像素层面给出属于每个实例的像素。

看到这里,可以具体思考下自己的问题是对应其中的哪一类问题,或者是需要几种任务的结合。

3、实际操作
可以先通过一个简单的例子入手,先了解构建这一个框架需要准备什么。手写数字识别可以说是深度学习的入门数据集,其任务也经常作为该领域入门的案例,也可以自己在网上寻找。

‘叁’ 如何进行图像增强 python

对单张图像进行图像对比度增强:
from PIL import Imagefrom PIL import ImageEnhanceimg = Image.open('./0h/FGF2.tif')img.show()#对比度增强 enh_con = ImageEnhance.Contrast(img)contrast = 1.5 img_contrasted = enh_con.enhance(contrast)img_contrasted.show()img_contrasted.save("./0h/FGF2-new.tif")

‘肆’ 学习python的话大概要学习哪些内容

想要学习Python,需要掌握的内容还是比较多的,对于自学的同学来说会有一些难度,不推荐自学能力差的人。我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:

Python学习顺序:

①Python软件开发基础

想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,南京北大青鸟、中博软件学院、南京课工场等都是不错的选择,建议实地考察对比一下。

祝你学有所成,望采纳。

‘伍’ python需要学习什么内容

Python的学习内容还是比较多的,我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:

Python学习顺序:

①Python软件开发基础

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,中博软件学院、南京课工场、南京北大青鸟等开设python专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

‘陆’ pillow教程

在Python图像库中最重要的类是同名模块中定义的 Image 类。您可以利用以下方法创造该类的实例:从文件中导入图像、处理其他的图像以及从零开始创建图像。

从文件中导入图像,使用在 Image 模块中的 open() 函数:

如果成功。该函数返回一个 Image 对象。您现在可以使用实例的属性来检查文件内容了:

format 属性识别图像的来源。如果图像不是从图像中读取,则该属性设置为None。 size 属性是一个一个包含宽和高(像素)的二元组。 mode 属性定义图像频段的数量和名称,以及像素的类型和深度。常用的模式(mode)为表示灰色图像的“L”,表示真彩色图像的处理问题“RGB”,以及印前图像的画面“CMYK”。

如何图像不能被打开,则会报出 OSError 异常。

一旦您有 Image 类的实例,您可以使用类中定义的方法来处理和操作图像。比如,让我们显示导入的图像:

show() 的标准版本不是非常的高效,因为该函数会把图像保存到一个临时文件并调用实用程序来显示图像。如果您没有安装一个合适的实用程序,它甚至不会起作用。虽然当它不起作用时,调试和测试是非常方便的。

下面的章节概括了该库提供的不同函数。

该Python图像库支持大量的图像文件格式。为了从磁盘中阅读文件,使用在 Image 模块中的 open() 。您不需要知道打开文件的文件格式。该库能够自动地根据文件的内容决定格式。

为了保存一个文件,使用 Image 类中的 save() 方法。当保存文件时,名字非常重要。除非您指定格式,该库使用文件名的后缀来发现将要使用的文件存储格式。

提供给 save() 方法的第二个参数精准地制定了一个文件的格式。如果您使用了非标准的后缀,您必须一直使用以下方式指定格式:

值得注意的是,非必要情况该库不会解码或加载栅格数据(raster data)。当您打开一个文件时,文件头将被读取用于确定文件格式以及提取如模式、尺寸等其他解码文件需要的性质,但是文件余下的部分会稍后再处理。

这意味着打开一个图像是最后的操作,它与文件大小和压缩类型无关。这里有一种简单的脚本可以块度地识别图像文件集:

Image类包含允许您操作图像内区域的方法。为了从图像中提取子矩形,使用crop()方法。

一个区域是一个4元组,其中坐标为(左,上,右,下)。该Python图像库使用左上角坐标为(0,0)的坐标系统。同样值得注意的是,坐标是指像素间的位置,因此上例中的区域正好为300x300的像素。

该区域现在能以某种方法进行处理并粘贴回去。

当将区域粘贴回去时,区域的大小必须准确地匹配给定的区域。此外,区域不能拓展到图像之外。然而,原始图像和区域的模式不必相匹。如果相同,则区域会在被粘贴前自动地转换(有关详细信息,请参阅下面的 颜色转换 部分)。

这里有一个额外的例子:

对于更高级的技巧,paste方法可以将透明掩码(transparency mask)作为可选参数。在掩码中,数值255被粘贴的图像在该位置是不透明的(即,被粘贴的图像就是原图粘贴)。数值0表示被粘贴的图像是完全透明的。在0和255之间的数值表示不同级别的透明程度。例如,粘贴一个RGBA图像并将其作为掩码会粘贴图像的不透明部分,但不会粘贴其透明背景。

该Python图像库也允许您在多频段图像中的单个频段中进行工作,例如RGB图像。split方法创造了新的图像集,每一个都包含了来自原始多频段图像的一个频段。合并函数将一个模式和图像组作为输入,并将其组合为新图像。下面示例交换了一个RGB图像的三个频段:

值得注意的是,对一个单波段图像而言, split() 返回图像本身。要在单个颜色频段上工作,您可能需要首先将图像转换为"RGB"。

PIL.Image.Image 类包含调整( resize() )和旋转( rotate() )一个图像的方法。前者通过输入元组来确定新的图片大小,后者通过输入的角度以逆时间旋转图片。

若要90度旋转图像,您即可以使用 rotate() 方法,也可以使用 transpose() 方法。后者还可以在水平或垂直轴周围翻转图像。

transpose(ROTATE)也可以和 rotate() 执行的结果相同,前提是rotate()中的expand标志设置为真,用以提供图像尺寸的相同更改。

图像转换的一种更一般的形式是通过 transform() 方法执行。

该Python图像库允许您使用convert()方法在不同的像素表示间转换图像。

该库可以在每个支持的模式和“L”以及“RGB”模式间进行转换。为了在其他模式间进行转换,您可能会使用到一个中间图像(通常为“RGB”图像)。

该Python图像库提供了大量的方法和模块用于增强图像。

ImageFilter 模块包含了许多能和 filter() 方法一起使用的预定义的增强过滤器。

point() 方法用于翻译图像的像素值(如图像对比度操作)。在多数情况下,一个函数对象期望一个传递给方法的参数。每一个像素都按照函数进行处理:

使用以上方法,您可以快速地在图像上应用任何简单的表达式。您还可以通过结合 point() 和 paste() 方法来有选择性地修改图像:

以下语法用于创造掩码:

Python仅评估确定结果所需的逻辑表达部分,并返回作为表达结果检查的最后值。因此,如果以上表达式为假(0),Python不再查看第二个操作数,并返回0。相反地,返回255。

对更先进的图像增强,您可以使用 ImageEnhance 模块中的类。一旦从图像创建,增强对象可用于快速尝试不同的设置。

您可以通过这种方式调整对比度、亮度、颜色平衡和锐度。

该Python图像库包含一些对图像序列(也称为动画支持)的基础支持。支持的序列格式包括FLI/FLC,GIF,以及一些实验格式。TIgFF文件还可以包含多个帧。

当您打开一个序列文件,PIL自动地导入序列的第一帧。您可以使用seek并告诉方法在不同帧之间移动:

如例所见,当序列结束时,您会得到一个 EOFError 异常。

下列类允许您使用for语句循环序列:

该Python图像库包含在PostScript打印机上打印图像、文本以及图形的功能。下面是一个简单的示例:

如早前描述的一样, Image 模块中的 open() 函数用于打开图像文件。在大部分情况下,您简单地传入文件名作为一个参数。Image.open能作为文本管理器:

您可以使用一个类文件对象来代替文件名。这个对戏必须实现必须实现file.read、file.seek和file.tell方法,且必须以二进制模式打开。

要从二进制数据中读取图像,请使用 Bytes10 类:

请注意,库在阅读图像头部之前会倒带文件(使用seek(0))。此外,当读取图像数据时(通过load方法),还将使用seek。如果图像文件嵌入到较大的文件中,例如tar文件,您可以使用 ContainerIO 或 TarIO 模块来访问它。

一些解码器允许您在从文件中读取图像时对其进行操作。这通常被用于创建缩略图(当速度远大于质量时)和打印到单色激光打印机(当只需要图像的灰度版本时)的解码过程。

draft()方法操纵打开但尚未加载的图像,以便尽可能与给定的模式和大小匹配。这是通过重新配置图像解码器来完成的。

这只适用于JPEG和MPO文件。

打印结果如下:

值得注意的是,生成的图像可能不会精确地匹配要求的模式和尺寸。为了确保图像不大于给定的尺寸,请使用thumbnail方法。

‘柒’ python的pillow库怎么处理灰度图像

Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。
1)使用 Image 类
PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。
要从文件加载图像,可以使用open( )函数,在Image模块中:
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")

加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容:

>>> print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
>>>

format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。
如果文件打开错误,返回 IOError 错误。
只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:
im.show()

2)读写图像
PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。
加载文件,并转化为png格式:

"Python Image Library Test"
from PIL import Image
import os
import sys

for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)

save() 方法的第二个参数可以指定文件格式。
3)创建缩略图
缩略图是网络开发或图像软件预览常用的一种基本技术,使用Python的Pillow图像库可以很方便的建立缩略图,如下:
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")

上段代码对photoshop下的jpg图像文件全部创建缩略图,并保存,glob模块是一种智能化的文件名匹配技术,在批图像处理中经常会用到。
注意:Pillow库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。
4)图像的剪切、粘贴与合并操作
Image 类包含的方法允许你操作图像部分选区,PIL.Image.Image.crop 方法获取图像的一个子矩形选区,如:

# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)

矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 200×200 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。

region = region.transpose(Image.ROTATE_180)
im.paste(region, box)

当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色。
5)分离和合并颜色通道
对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中,很简单,如下:

r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))

对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道。
6)几何变换
对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ),如用法如下:

out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise

其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度。在Pillow中,对于一些常见的旋转作了专门的定义:

out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)

7)颜色空间变换
在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:

cmyk = im.convert("CMYK")
gray = im.convert("L")

8)图像滤波
图像滤波在ImageFilter 模块中,在该模块中,预先定义了很多增强滤波器,可以通过filter( )函数使用,预定义滤波器包括:
BLUR、CONTOUR、DETAIL、EDGE_ENHANCE、EDGE_ENHANCE_MORE、EMBOSS、FIND_EDGES、SMOOTH、SMOOTH_MORE、SHARPEN。其中BLUR就是均值滤波,CONTOUR找轮廓,FIND_EDGES边缘检测,使用该模块时,需先导入,使用方法如下:

from PIL import ImageFilter

imgF = Image.open("E:/photoshop/lena.jpg")
outF = imgF.filter(ImageFilter.DETAIL)
conF = imgF.filter(ImageFilter.CONTOUR)
edgeF = imgF.filter(ImageFilter.FIND_EDGES)
imgF.show()
outF.show()
conF.show()
edgeF.show()

除此以外,ImageFilter模块还包括一些扩展性强的滤波器:
class PIL.ImageFilter.GaussianBlur(radius=2)

‘捌’ 为什么人工智能用Python

这属于一种误解,人工智能的核心算法是完全依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到。所以某种意义上其实C/C++才是人工智能领域最重要的语言。
Python是这些库的API binding,使用Python是因为CPython的胶水语言特性,要开发一个其他语言到C/C++的跨语言接口,Python是最容易的,比其他语言的ffi门槛要低不少,尤其是使用Cython的时候。其他语言的ffi许多都只能导入C的函数入口点,复杂的数据结构大多只能手工用byte数组拼起来,如果还需要回调函数输入那就无计可施了。而CPython的C API是双向融合的,可以直接对外暴露封装过的Python对象,还可以允许用户通过继承这些自定义对象来引入新特性,甚至可以从C代码当中再调用Python的函数(当然,也有一定的条件限制)。不过这也是PyPy这样的JIT解释器的一个障碍。
而且Python历史上也一直都是科学计算和数据分析的重要工具,有numpy这样的底子,因为行业近似所以选择API binding语言的时候会首选Python,同时复用numpy这样的基础库既减少了开发工作量,也方便从业人员上手。

‘玖’ python可以用来处理图像吗

可以的,
PythonWare公司提供了免费的Python图像处理工具包PIL(Python Image Library),该软件包提供了基本的图像处理功能,如:

改变图像大小,旋转图像,图像格式转换,色场空间转换,图像增强,直方图处理,插值和滤波等等。虽然在这个软件包上要实现类似MATLAB中的复杂的图像处理算法并不太适合,但是Python的快速开发能力以及面向对象等等诸多特点使得它非常适合用来进行原型开发。

在PIL中,任何一副图像都是用一个Image对象表示,而这个类由和它同名的模块导出,因此,最简单的形式是这样的:

import Image img = Image.open(“dip.jpg”)
注意:第一行的Image是模块名;第二行的img是一个Image对象;
Image类是在Image模块中定义的。关于Image模块和Image类,切记不要混淆了。现在,我们就可以对img进行各种操作了,所有对img的
操作最终都会反映到到dip.img图像上。

PIL提供了丰富的功能模块:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模块是
Image,ImageDraw,ImageEnhance这三个模块。下面我对此分别做一介绍。关于其它模块的使用请参见说明文档.有关PIL软件包和
相关的说明文档可在PythonWare的站点www.Pythonware.com上获得。

Image模块:

Image模块是PIL最基本的模块,其中导出了Image类,一个Image类实例对象就对应了一副图像。同时,Image模块还提供了很多有用的函数。

(1)打开一文件:
import Image img = Image.open(“dip.jpg”)

这将返回一个Image类实例对象,后面的所有的操作都是在img上完成的。

(2)调整文件大小:

import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")

原来的图像大小是256x256,现在,保存的new_img.jpg的大小是128x128。

就是这么简单,需要说明的是Image.BILINEAR指定采用双线性法对像素点插值。

在批处理或者简单的Python图像处理任务中,采用Python和PIL(Python Image Library)的组合来完成图像处理任务是一个很不错的选择。设想有一个需要对某个文件夹下的所有图像将对比度提高2倍的任务。用Python来做将是十分简单的。当然,我也不得不承认Python在图像处理方面的功能还比较弱,显然还不适合用来进行滤波、特征提取等等一些更为复杂的应用。我个人的观点是,当你要实现这些“高级”的算法的时候,好吧,把它交给MATLAB去完成。但是,如果你面对的只是一个通常的不要求很复杂算法的图像处理任务,那么,Python图像处理应该才是你的最佳搭档。

‘拾’ 如何python pil开发图像识别

1. 简介。

图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以在这里下载学习和查找资料。

Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。

2. 使用。

导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:

1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB

这里有三个属性,我们逐一了解。

format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。

size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。

mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。

现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:

1 >>>im.show()
2 >>>

输出原图:

3.5 更多关于图像文件的读取。

最基本的方式:im = Image.open("filename")

类文件读取:fp = open("filename", "rb"); im = Image.open(fp)

字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))

从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)

基本的 PIL 目前就练习到这里。其他函数的功能可点击这里进一步阅读。

阅读全文

与python图像增强算法相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:764
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:841
安卓怎么下载60秒生存 浏览:800
外向式文件夹 浏览:233
dospdf 浏览:428
怎么修改腾讯云服务器ip 浏览:385
pdftoeps 浏览:490
为什么鸿蒙那么像安卓 浏览:733
安卓手机怎么拍自媒体视频 浏览:183
单片机各个中断的初始化 浏览:721
python怎么集合元素 浏览:477
python逐条解读 浏览:829
基于单片机的湿度控制 浏览:496
ios如何使用安卓的帐号 浏览:880
程序员公园采访 浏览:809
程序员实战教程要多长时间 浏览:972
企业数据加密技巧 浏览:132
租云服务器开发 浏览:811
程序员告白妈妈不同意 浏览:333
攻城掠地怎么查看服务器 浏览:600