导航:首页 > 源码编译 > java五大常用算法

java五大常用算法

发布时间:2023-05-28 15:14:49

java数字图像处理常用算法


前些时候做毕业设计 用java做的数字图像处理方面的东西 这方面的资料ms比较少 发点东西上来大家共享一下 主要就是些算法 有自己写的 有人家的 还有改人家的 有的算法写的不好 大家不要见笑

一 读取bmp图片数据

// 获取待检测图像 数据保存在数组 nData[] nB[] nG[] nR[]中

public void getBMPImage(String source) throws Exception { clearNData(); //清除数据保存区 FileInputStream fs = null; try { fs = new FileInputStream(source); int bfLen = ; byte bf[] = new byte[bfLen]; fs read(bf bfLen); // 读取 字节BMP文件头 int biLen = ; byte bi[] = new byte[biLen]; fs read(bi biLen); // 读取 字节BMP信息头

// 源图宽度 nWidth = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 源图高度 nHeight = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 位数 nBitCount = (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 源图大小 int nSizeImage = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 对 位BMP进行解析 if (nBitCount == ){ int nPad = (nSizeImage / nHeight) nWidth * ; nData = new int[nHeight * nWidth]; nB=new int[nHeight * nWidth]; nR=new int[nHeight * nWidth]; nG=new int[nHeight * nWidth];键带 byte bRGB[] = new byte[(nWidth + nPad) * * nHeight]; fs read(bRGB (nWidth + nPad) * * nHeight); int nIndex = ; for (int j = ; j < nHeight; j++){ for (int i = ; i < nWidth; i++) { nData[nWidth * (nHeight j ) + i] = ( & xff) << | (((int) bRGB[nIndex + ] & xff) << ) | (((int) bRGB[nIndex + ] & xff) << ) | (int) bRGB[nIndex] & xff; nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex]& xff; nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ]& xff; nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ]& xff;稿物芦 nIndex += ; } nIndex += nPad; }// Toolkit kit = Toolkit getDefaultToolkit();// image = kit createImage(new MemoryImageSource(nWidth nHeight // nData nWidth));

/*蚂册 //调试数据的读取

FileWriter fw = new FileWriter( C:\Documents and Settings\Administrator\My Documents\nDataRaw txt );//创建新文件 PrintWriter out = new PrintWriter(fw); for(int j= ;j<nHeight;j++){ for(int i= ;i<nWidth;i++){ out print(( * +nData[nWidth * (nHeight j ) + i])+ _ +nR[nWidth * (nHeight j ) + i]+ _ +nG[nWidth * (nHeight j ) + i]+ _ +nB[nWidth * (nHeight j ) + i]+ ); } out println( ); } out close();*/ } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } finally { if (fs != null) { fs close(); } } // return image; }

二由r g b 获取灰度数组

public int[] getBrightnessData(int rData[] int gData[] int bData[]){ int brightnessData[]=new int[rData length]; if(rData length!=gData length || rData length!=bData length || bData length!=gData length){ return brightnessData; } else { for(int i= ;i<bData length;i++){ double temp= *rData[i]+ *gData[i]+ *bData[i]; brightnessData[i]=(int)(temp)+((temp (int)(temp))> ? : ); } return brightnessData; } }

三 直方图均衡化

public int [] equilibrateGray(int[] PixelsGray int width int height) { int gray; int length=PixelsGray length; int FrequenceGray[]=new int[length]; int SumGray[]=new int[ ]; int ImageDestination[]=new int[length]; for(int i = ; i <length ;i++) { gray=PixelsGray[i]; FrequenceGray[gray]++; } // 灰度均衡化 SumGray[ ]=FrequenceGray[ ]; for(int i= ;i< ;i++){ SumGray[i]=SumGray[i ]+FrequenceGray[i]; } for(int i= ;i< ;i++) { SumGray[i]=(int)(SumGray[i]* /length); } for(int i= ;i<height;i++) { for(int j= ;j<width;j++) { int k=i*width+j; ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]]<< ) | (SumGray[PixelsGray[k]]<< ) | SumGray[PixelsGray[k]]); } } return ImageDestination; }

四 laplace 阶滤波 增强边缘 图像锐化

public int[] laplace DFileter(int []data int width int height){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=data[i*width+j]; else filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } }// System out println( max: +max);// System out println( min: +min); for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; }

五 laplace 阶增强滤波 增强边缘 增强系数delt

public int[] laplaceHigh DFileter(int []data int width int height double delt){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=(int)(( +delt)*data[i*width+j]); else filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } } for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; } 六 局部阈值处理 值化

// 局部阈值处理 值化 niblack s method /*原理 T(x y)=m(x y) + k*s(x y) 取一个宽度为w的矩形框 (x y)为这个框的中心 统计框内数据 T(x y)为阈值 m(x y)为均值 s(x y)为均方差 k为参数(推荐 )计算出t再对(x y)进行切割 / 这个算法的优点是 速度快 效果好 缺点是 niblack s method会产生一定的噪声 */ public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){ int[] processData=new int[data length]; for(int i= ;i<data length;i++){ processData[i]= ; } if(data length!=width*height) return processData; int wNum=width/w; int hNum=height/h; int delt[]=new int[w*h]; //System out println( w; +w+ h: +h+ wNum: +wNum+ hNum: +hNum); for(int j= ;j<hNum;j++){ for(int i= ;i<wNum;i++){ //for(int j= ;j< ;j++){ //for(int i= ;i< ;i++){ for(int n= ;n<h;n++) for(int k= ;k<w;k++){ delt[n*w+k]=data[(j*h+n)*width+i*w+k]; //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;n<h;n++) for(int k= ;k<w;k++){ System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ ); } System out println(); */ delt=thresholdProcess(delt w h coefficients gate); for(int n= ;n<h;n++) for(int k= ;k<w;k++){ processData[(j*h+n)*width+i*w+k]=delt[n*w+k]; // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;n<h;n++) for(int k= ;k<w;k++){ System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ ); } System out println(); */ } } return processData; }

七 全局阈值处理 值化

public int[] thresholdProcess(int []data int width int height double coefficients double gate){ int [] processData=new int[data length]; if(data length!=width*height) return processData; else{ double sum= ; double average= ; double variance= ; double threshold; if( gate!= ){ threshold=gate; } else{ for(int i= ;i<width*height;i++){ sum+=data[i]; } average=sum/(width*height); for(int i= ;i<width*height;i++){ variance+=(data[i] average)*(data[i] average); } variance=Math sqrt(variance); threshold=average coefficients*variance; } for(int i= ;i<width*height;i++){ if(data[i]>threshold) processData[i]= ; else processData[i]= ; } return processData; } }

八 垂直边缘检测 sobel算子

public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{ int filterData[]=new int[data length]; int min= ; int max= ; if(data length!=width*height) return filterData; try{ for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i== || i==height || i==height ||j== || j== || j==width || j==width ){ filterData[i*width+j]=data[i*width+j]; } else{ double average; //中心的九个像素点 //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ] average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ] data[(i )*width+j ]+data[(i )*width+j+ ] data[(i+ )*width+j ]+data[(i+ )*width+j+ ]; filterData[i*width+j]=(int)(average); } if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } } for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } return filterData; }

九 图像平滑 * 掩模处理(平均处理) 降低噪声

lishixin/Article/program/Java/hx/201311/26286

⑵ 常用的算法在java里边怎么做,例

(一) 问题描述
给定由n个整数(可能为负整数)组成的序列a1,a2,a3,···,an,求该序列的子段和的最大值。当所有整数均为负整数是定义其最大子段和为0,一次定义,所求的最优质值为:max{0、max子段和}。

(二) 算法描述
动态规划法的基本思想:
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。
算法设计:
#include "stdafx.h"
int MaxSum(int a[],int n,int &Start,int&End){
intsum=0;
int*b,t;
b=newint[n+1];
b[0]=0;
for(inti=1;i<=n;i++){
if(b[i-1]>0){
b[i]=b[i-1]+a[i];
}
else {
b[i]=a[i];t=i;
}
if(b[i]>sum){
sum=b[i];
Start=t;
End=i;
}
}
delete[]b;
returnsum;
}

int main(int argc, char* argv[])
{
inta[7]={0,-2,11,-4,13,-5,-2},sum,Start,End,i;
sum=MaxSum(a,6,Start,End);
for(i=Start;i<=End;i++){
printf("%d ",a[i]);
}
printf("\n%d\n",sum);
getchar();
getchar();
return0;

⑶ java最常用的几种加密算法

简单的Java加密算法有:
第一种. BASE
Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
第二种. MD
MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。
MD算法具有以下特点:
压缩性:任意长度的数据,算出的MD值长度都是固定的。
容易计算:从原数据计算出MD值很容易。
抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。
弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。
强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。
MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。
第三种.SHA
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
SHA-与MD的比较
因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行攻击的安全性:最显着和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。
对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。
速度:在相同的硬件上,SHA-的运行速度比MD慢。
第四种.HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

⑷ 求Java常用算法和经典算法

java.util.Arrays中包含了很多算法你可以看一看,jdk安装的时候就有提供源代码的。

⑸ 《Java常用算法手册第三版》pdf下载在线阅读全文,求百度网盘云资源

《Java常用算法手册第三版》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1PJdaTXXYyhN23tyJjMbIWw

?pwd=mbgq 提取码: mbgq
简介:Java常用算法手册第三版分别介绍了算法基础、算法应用和算法面试题。首先介绍了算法概述,然后重点分析了数据结构和基本算法思想;接着详细讲解了算法在排序、查找、数学计算、数论、历史趣题、游戏等领域中的应用。

⑹ java常见gc算法有哪些

1:标记—清除
Mark-Sweep
过程:标记可回收对象,进行清除
缺点:标记和清除效率低,清除后会产生内存碎片
2:复制算法
过程:将内存划分为相等的两块,将存活的对象复制到另一块内存,把已经使用的内存清理掉
缺点:使用的内存变为了原来的一半
进化:将一块内存按8:1的比例分为一块Eden区(80%)和两块Survivor区(10%)
每次使用Eden和一块Survivor,回收时,将存活的对象一次性复制到另一块Survivor上,如果另一块Survivor空间不足,则使用分配担保机制存入老年代
3:标记—整理
Mark—Compact
过程:所有存活的对象向一端移动,然后清除掉边界以外的内存
4:分代收集算法
过程:将堆分为新生代和老年代,根据区域特点选用不同的收集算法,如果新生代朝生夕死,则采用复制算法,老年代采用标记清除,或标记整理
面试的话说出来这四种足够了

⑺ java中的算法,一共有多少种,哪几种,怎么分类。

就好比问,汉语中常用写作方法有多少种,怎么分类。

算法按用途分,体现设计目的、有什么特点
算法按实现方式分,有递归、迭代、平行、序列、过程、确定、不确定等等
算法按设计范型分,有分治、动态、贪心、线性、图论、简化等等

作为图灵完备的语言,理论上”Java语言“可以实现所有算法。
“Java的标准库'中用了一些常用数据结构和相关算法.

像apache common这样的java库中又提供了一些通用的算法

⑻ 学习Java具体都要学什么内容

学习java是个不错的选择,java在it行业需求的人才每年占上百万个,并且平均每个月薪资也是在1.8W左右。

如果想达到工作标准可以参考下面的内容:

1.Java SE部分 初级语法,面向对象,异常,IO流,多线程,Java Swing,JDBC,泛型,注解,反射等。

2.数据库部分,基础的sql语句,sql语句调优,索引,数据库引擎,存储过程,触发器,事务等。

3. 前端部分, HTML5 CSS3 JS, HTML DOM Jquery BootStrap等。

4. Java EE部分,Tomcat和Nginx服务器搭建,配置文件,Servlet,JSP,Filter,Listener,http协议,MVC等。

5. 框架部分,每个框架都可以分开学,在去学如何使用SSM 或者SSH框架,如何搭建,如何整合。开发中为什么会用框架,Rest是啥?Spring为啥经久不衰,底层如何实现等。

6.23种设计模式,掌握常用的,比如单例模式的多种实现,责任链模式,工厂模式,装饰器模式等,了解常用场景。

7. 基础算法和数据结构,八大排序算法,查找算法。

8. 熟练使用maven等构建工具,git等版本控制工具,熟悉常用linux命令,log4j,bug,junit单元测试,日志打印工具,Redis等NoSql。

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

阅读全文

与java五大常用算法相关的资料

热点内容
阿甘正传阿甘的英文名 浏览:159
电影天名 浏览:626
弱视矫治系统源码 浏览:899
金融市场基础知识pdf 浏览:383
三没降头电影 浏览:586
黄色武侠小说txt下载 浏览:531
如何将服务器转移至阿里平台 浏览:744
哪个网站可以看岛国片 浏览:648
代驾app如何导航到起点 浏览:667
机器人穿越外国电影 浏览:681
赢在龙头主图指标源码 浏览:951
符号加在命令后面 浏览:271
沙漏验机宝检测安卓手机怎么样 浏览:369
非洲电影有哪些好看的 浏览:763
媒介学pdf 浏览:234
推荐一个在线观看 浏览:471
单片机16进制编程图 浏览:490
金刚2迅雷下载 浏览:275
聚优电影卡使用范围 浏览:760