导航:首页 > 源码编译 > 路径跟随算法入门

路径跟随算法入门

发布时间:2023-09-03 16:09:37

❶ 最短路径算法

最短路径的算法主要有三种:floyd算法、Dijkstra算法、Bellman-Ford(贝尔曼-福特)

一、floyd算法

基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

三、Bellman-Ford(贝尔曼-福特)

算法的流程如下:

给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

1.数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;

2.以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

3.为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说该图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

阅读全文

与路径跟随算法入门相关的资料

热点内容
cmd编译错误找不到符号 浏览:695
linuxip机器名 浏览:487
服务器喇叭和频道喇叭有什么区别 浏览:31
闲鱼排名算法如何计算 浏览:975
linuxtargz解压命令 浏览:741
还完房贷后解压手续银行会代办吗 浏览:811
解压烹饪乐高 浏览:675
元神的服务器怎么看 浏览:362
stc8单片机串口中断 浏览:954
信号分析pdf 浏览:927
暴力删除命令 浏览:803
qt如何编译加快速度 浏览:903
php添加数据sql语句 浏览:717
免费的小说app有什么 浏览:405
螺杆压缩机进气阀动画 浏览:651
两台服务器如何做负载均衡 浏览:227
程序员的工资是涨的吗 浏览:813
视频存储服务器可以干什么 浏览:463
创建文件夹安装失败怎么回事 浏览:832
程序员高考隔了几年 浏览:822