导航:首页 > 源码编译 > 数据挖掘相关算法

数据挖掘相关算法

发布时间:2025-06-29 22:30:55

㈠ 数据挖掘的十大经典算法,总算是讲清楚了,想提升自己的赶快收藏

一个优秀的数据分析师,除了要掌握基本的统计学、数据分析思维、数据分析工具之外,还需要掌握基本的数据挖掘思想,帮助我们挖掘出有价值的数据,这也是数据分析专家和一般数据分析师的差距所在。

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。今天主要分享其中10种经典算法,内容较干,建议收藏备用学习。

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。

同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法(二元切分法);第二个想法是用验证数据进行剪枝(预剪枝、后剪枝)。在回归树的基础上的模型树构建难度可能增加了,但同时其分类效果也有提升。

参考书籍:《机器学习实战》

㈡ 急用!!!数据挖掘的六种常用算法和技术分别是什么

数据挖掘技术和算法技术:概念方法

算法:一步一步具体实现的细节

不同的目标要调用不同的技术

数据挖掘根据其目标分为说明性(Prescriptive)和描述性 (Descriptive)数据挖掘两种

不同的Data Type调用不同技术

三种数据挖掘技术

自动聚集检测;决策树;神经网络

原因: 大量的商业软件应用

覆盖了数据挖掘一个较广的范围

直接数据挖掘目标是预言,估值,分类,预定义目标变量的特征行为

神经元网络;决策树

间接数据挖掘:没有目标变量被预言,目的是发现整个数据集的结构

聚集检测

自动聚集检测

方法

K-均值是讲整个数据集分为K个聚集的算法。

K-均值聚集检测如何工作

随机选取K个记录,作为种子节点;

对剩余的记录集合,计算每个记录与K个种子节点的距离,将每个记录归到最近的那个种子节点,这样整个记录集初次划分为K个聚集;

对每个聚集,计算聚集的质心(聚集中心点);

以每个质心为种子节点,重复上述步骤,直至聚集不再改变。

Consequences of Choosing Clustering

选择距离函数

选择合适的聚集数

对聚集的解释

构造决策树

可视化看聚集如何受输入变量的影响

单变量测试

什么时候使用聚集检测

决策树

决策树分类

决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。

一般的数据挖掘工具,允许选择分裂条件和修剪规则,以及控制参数(最小节点的大小,最大树的深度等等),来限制决策树的overfitting。

决策树如何工作

决策树是一棵树,树的根节点是整个数据集合空间,每个分节点是对一个单一变量的测试,该测试将数据集合空间分割成两个或更多块。每个叶节点是属于单一类别的记录。

首先,通过训练集生成决策树,再通过测试集对决策树进行修剪。决策树的功能是预言一个新的记录属于哪一类。

决策树如何构建

通过递归分割的过程构建决策树。

寻找初始分裂

整个训练集作为产生决策树的集合,训练集每个记录必须是已经分好类的。

决定哪个属性(Field)域作为目前最好的分类指标。一般的做法是穷尽所有的属性域,对每个属性域分裂的好坏做出量化,计算出最好的一个分裂。量化的标准是计算每个分裂的多样性(diversity)指标GINI指标。

树增长到一棵完整的树

重复第一步,直至每个叶节点内的记录都属于同一类。

数据的修剪

选择决策树的结果

处理输入变量

树和规则

选择最好的属性的能力

什么时候使用决策树

神经网络

神经元模型

生物模型

人工神经元

神经网模型

网的拓扑结构:层次(前馈,反馈);全连通

学习方法:有教员的(出入均知道);无教员的(输出不知道)

运行机制:同步;异步

神经网络的基本特点

大量简单节点的复杂连接;高度并行处理;分布式存储,信息存在整个网中,用权值体现出来,有联想能力,可以从一个不完整的信息恢复出完整信息;自组织、自学习。

六种常用于模式识别的神经网络分类器

Hopfield Net

Harmming Net

Carpenter/Grossberg 分类器

单层感知网

多层感知网

Kohonen的自组织特性图

㈢ 用于数据挖掘的分类算法有哪些,各有何优劣

1、朴素贝叶斯(Naive Bayes, NB)

简单,就像做一些数数的工作。

如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。

如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试.


2.Logistic回归(Logistic Regression, LR)

LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。

如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的.


3.决策树(Decision Tree, DT)

DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,DT可以轻松的处理这种情况:属于A类的样本的特征x取值往往非常小或者非常大,而属于B类的样本的特征x取值在中间范围)。

DT的主要缺点是容易过拟合,这也正是随机森林(Random Forest, RF)(或者Boosted树)等集成学习算法被提出来的原因。

此外,RF在很多分类问题中经常表现得最好,且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法.


4.支持向量机(Support Vector Machine, SVM)

很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。

SVM在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为RF已经开始威胁其地位了.

阅读全文

与数据挖掘相关算法相关的资料

热点内容
app怎么续保 浏览:929
Javaswt老程序员 浏览:361
抗疫服从命令 浏览:460
汇入式和单片机有什么区别 浏览:267
岩棉板压缩强度 浏览:631
服务器主频怎么看 浏览:848
怎么把文件夹变成大树的样子 浏览:562
磁卡为加密卡暂不支持模拟 浏览:274
电脑跟服务器连不上什么原因 浏览:764
单片机表格 浏览:312
移动磁盘加密无法格式化怎么办 浏览:626
530a单片机技术资料 浏览:491
程序员辞职原因 浏览:752
程序员自学编程靠谱吗 浏览:91
加密在网关 浏览:181
如何在本机上搭建代理服务器 浏览:114
linux从入门到精通第2版 浏览:369
ubuntuopenwrt编译环境 浏览:193
python求一组随机数的最大值 浏览:871
云南首选dns服务器地址 浏览:445