Ⅰ otsu阈值分割算法是什么
Otsu算法:最大类间方差法(大津算法),是一种确定阈值的算法。
之所以称为最大类间方差法是因为,用该阈值进行的图像固定阈值二值化,类间方差最大,它是按图像的灰度特性,将图像分成背景和前景两部分,使类间方差最大的分割意味着错分概率最小。
算法评价:
优点:算法简单,当目标与背景的面积相差不大时,能够有效地对图像进行分割。
缺点:当图像中的目标与背景的面积相差很大时,表现为直方图没有明显的双峰,或者两个峰的大小相差很大,分割效果不佳,或者目标与背景的灰度有较大的重叠时也不能准确的将目标与背景分开。
Ⅱ 阈值分割的OTSU算法
OTSU算法又叫最大类间方差阈值分割算法,也叫大津算法(大津展之 Ōtsu Nobuyuki),主要用于一些简单的阈值确定。
对于下面这张灰度图片:
我们想让这些物体(前景)和背景区分更明显一些,比如让物体为纯黑,背景全白。那么我们就需要找到一个合适的阈值,使图片上灰度值大于这个阈值的像素点为255(白色),灰度值小于阈值的像素点为0(黑色)。也就是变成下面这幅图:
怎样确定这个阈值呢?OTSU算法说,我们可以求出用这个阈值分割后的两个图像对应pixel的类间方差。对于每一个可能的阈值,我们计算并取出类间方差最大的那个像素pixel值,此时这个值就可以较好的对图像进行分割。
对应直方图如下:
1、将灰度值区间为[0,m],对于[0,m]间的每一个灰度t,将它作为阈值将图像分割为灰度为[0,t]以及[t+1,m]两部分。
2、计算每一部分的所占比例 , ,每一部分的平均灰度值 , ,以及总的平均灰度值 。
3、计算他们的类间方差:
4、取出类间方差最大时对应的阈值t,这就可以作为我们最终所取的阈值。
小伙伴们如果觉得文章还行的请点个赞呦!!同时觉得文章哪里有问题的可以评论一下 谢谢你!