导航:首页 > 源码编译 > 数量积运算法则

数量积运算法则

发布时间:2022-04-28 14:47:07

1. 向量的数量积公式是

向量的数量积公式:a*b=|a||b|cosθ a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。

向量数量积的运算律:

⑴交换律:a·b=b·a

⑵数乘结合律:(λa)·b=λ(a·b)=a·(λb)

⑶分配律:(a+b)·c=a·c+b·c

2. 谁能告诉我向量的数量积和向量积有什么不同

一、指代不同

1、数量积:是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。

2、向量积:是一种在向量空间中向量的二元运算。

二、几何意义不同

1、数量积:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。

2、向量积:叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。

三、应用不同

1、数量积:平面向量的数量积a·b是一个非常重要的概念,利用它可以很容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、矩形的对角线相等等。

2、向量积:在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线

3. 向量的数量积的公式有哪些全部

向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号

拓展资料

向量的数量积

两个向量和的叉积写作×(有时也被写成∧,避免和字母x混淆)。叉积可以定义为:

在这里θ表示和之间的角度(0°≤θ≤180°),它位于这两个矢量所定义的平面上。而是一个与、所构成的平面垂直的单位矢量。

这个定义有个问题,就是同时有两个单位向量都垂直于和:若满足垂直的条件,那么-也满足。

"正确"的向量由向量空间的方向确定,即按照给定直角坐标系(, , )的左右手定则。若 (, , )满足右手定则,则 (, , ×)也满足右手定则;或者两者同时满足左手定则。

一个简单的确定满足"右手定则"的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从以不超过180度的转角转向时,竖起的大拇指指向是的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。

4. 数量积怎么计算

数量积: 又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|*|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。
若有坐标(ax,ay,az);(bx,by,bz)那么 ab=axbx+ayby+azbz
|a|=sqrt(ax^2+ay^2+az^2)
因此,用数量积可以求出两向量的夹角的余弦
已知两个向量A和B,它们的夹角为C,则A的模乘以B的模再乘以C的余弦称为A与B的数量积(又称内积)
即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b
向量的数量积运算律:
1.a·b=b·a
2.(λa)·b=λ(a·b)=a·(λb)
3.a·(b+c)=a·b+a·c
注:特殊的,我们把a·a记作a^2,则可得a^2=|a|^2

5. 矢量点乘和叉乘运算法

矢量是一种既有大小又有方向的量,又称为向量。
矢量点乘和叉乘运算法则:点乘,也叫向量的内积、数量积。运算法则为向量a·向量b=|a||b|cos。叉乘,也叫向量的外积、向量积。运算法则为|向量c|=|向量a×向量b|=|a||b|sin。
1、点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||b|cos。在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
2、叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。|向量c|=|向量a×向量b|=|a||b|sin。向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

6. 向量的数量积运算公式是什么呢

向量的数量积运算公式(几何定义):a*b=|a||b|cosθ。其中,a、b表示向量,θ表示向量a、b共起点时的夹角,很明显向量的数量积表示数,不是向量。

该定义只对二维和三维空间有效。这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。

向量数量积的运算律:

(1)a·b=b·a(交换律)。

(2)(a+b)·c=a·c+b·c(分配律)。

(3)(λa)·b=λ(a·b)=a·(λb)(结合律)。

以上内容参考:网络-点积

7. 向量的数量积运算公式什么

向量的数量积运算公式(几何定义):a*b=|a||b|cosθ。其中,a、b表示向量,θ表示向量a、b共起点时的夹角,很明显向量的数量积表示数,不是向量。

该定义只对二维和三维空间有效,这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。


向量的分解

首先,由平面向量基本定理可知,平面中的任意向量都可表示成两个不共线向量的线性组合,也可以理解为任意向量都可以分解成两个不共线的向量。垂直是一种特殊的不共线的位置关系,我们认为垂直的两个方向之间是互相不影响的。

因此我们经常选择互相垂直的两个单位向量作为基本向量,可以将任意一个向量表示成这两个向量的线性组合,这就是坐标表示平面向量的由来。因此我们经常会把向量在两个互相垂直的方向上进行分解。

假设平面中有两个向量F、L,可将向量F分解成与向量L垂直的分量和与向量L共线的分量。有这么一种情况,当向量F在与向量L垂直方向的分量上不会对向量L产生作用,而在与向量L共线方向的分量才会对向量L产生作用。

例如力和位移是两个向量,力在与位移共线的方向上才会做功,与位移垂直的方向上不会做功,而且做的功为共线两个向量大小的乘积。

为了表示这种向量之间的互相作用,才有了向量数量积的定义,数量积的计算结果为一个向量与另一个向量在其方向分量的大小的乘积。

8. 积的运算规律是什么

1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍。(N为非0自然数)。

2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。

3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。

4、总结:积的变化规律是指因数的变化所引起的积的变化。如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。一个因数扩大n倍,另一个因数缩小n倍,则积不变。

(8)数量积运算法则扩展阅读

两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。

数学定义 :假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。

事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。

例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。

3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。

一般而言,整数A乘以整数B得到整数C,整数A与整数B都称做整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。

9. 向量数量积公式是什么

向量的数量积公式:a*b=|a||b|cosθ a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

一个向量和另个向量在这个向量上的投影的乘积,前提始位置要相同。

求向量模的最值(范围)的方法:

  • 代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;

  • (2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.

    10. 【请问向量的数量积如何计算】

    数量级也叫标积,其运算结果是标量
    运算法则是a=b*c=b
    *
    c
    *
    cos&
    大写字母代表矢量(向量),小写字母代表相应向量的摩,&代表两向量间夹角。“*”是乘号,书写时应用点,
    故数量积运算在口语中经常被称为“点乘”。
    向量积也叫矢积,其运算结果是矢量
    运算法则是a=b×c=b
    *
    c
    *sin&
    方向为右手螺旋,即右手握拳,拇指向上伸出,让四指依次垂直穿过式中第一个向量和第二个向量,拇指方向即a向量方向(注意,b×c和c×b的结果不同,因为向量方向不同。而b*c和c*b的结果相同)。“×”是乘号,书写时应用乘号,故口语中向量积运算经常被称为“叉乘”。
    向量的运算在物理中应用较多,比如计算力的功w=f*s;
    圆周运动线速度v=w×r;洛伦兹力f=q*v×b等

    阅读全文

    与数量积运算法则相关的资料

    热点内容
    如何做一个系统u盘文件夹名字 浏览:966
    如何确认哪个ip重启了服务器 浏览:128
    照片压缩软件绿色版 浏览:107
    pgp基于什么体系加密 浏览:635
    python合法赋值语句格式 浏览:711
    程序员数学线性代数 浏览:624
    看帧率app如何使用 浏览:525
    从DHC服务器租用IP地址 浏览:477
    编译怎么学 浏览:331
    数码管显示0到9plc编程 浏览:667
    服务器是为什么服务的 浏览:769
    java定义数据类型 浏览:878
    安卓pdf手写 浏览:431
    什么是app开发者 浏览:288
    android闹钟重启 浏览:105
    程序员失职 浏览:522
    在云服务器怎么改密码 浏览:588
    服务器pb什么意思 浏览:944
    51驾驶员的是什么app 浏览:674
    php静态变量销毁 浏览:890