A. arm-linux-gcc交叉编译器的制作,以及版本选择问题。
,需要必须有足够动经验来支持。
另外,用 RH9 的都是高手,我想你的知识不需要来提问了吧?
1、在 PC 上编译 arm 的程序当然需要较差编译器,这个需要自己安装,或者着现成的交叉编译器环境,一般是一个特殊参数编译出来的 gcc + binutils + glibc + linux-header。这个每个人动环境不同,一般都需要自己编译一个,当然没有特殊需求,也可以找现成的。不过很难找,因为这套环境还要和你动系统搭配,不然环境不匹配,连这个环境都不能运行,那就更谈不上编译东西了。
有关自己编译搭建交叉编译环境,可以看看一个特殊的 Linux 发行版 LFS 的分支: CLFS 。
2、移植分很多意思,移植有可能就意味着这套源代码不能在目标系统上面编译,需要你根据相应的知识去修改源代码来让这套代码适应目标编译器的要求,比如源代码有 SSE4 的优化,这套程序在非 SSE4 CPU 上无法编译运行,但目标机器连 SSE1 都不支持。那么就需要移植。
或者移植仅仅是根据新的环境进行编译,不需要进行源代码修改,只需要进行一下编译就能运行的程序,也可以称为移植,就是从一个环境、架构 -》另一个环境、架构。都可以称为移植,但真正的移植意味着修改程序源代码来适应新环境。你说的这种移植是最简单的移植。
3、决定目标硬件环境 -》搭建目标编译器 -》制作目标环境(内核,基础软件库)-》进行应用移植(移植需要的软件、主应用程序)-》搭建系统文件系统 -》导入目标系统-》启动目标系统&应用。说起来很简单,因为这是完全没有问题的条件下。
至于超级终端。那是用来控制目标系统的。目标系统有可能不能插键盘鼠标显示器,这就需要一个远程网络链接来进行控制。以及通过远程链接来发送数据。这都需要终端的支持。
虚拟机下面进行开发,不能发挥你的计算机的性能。而且因为隔着 VMware 的软件模拟层,可能还不会很方便的让你链接目标设备。
至于用 socket ,我还没见到你的目标需要这个东西,因为所有的东西都是现成的源代码。不需要你从 0 开始写,当然你想自己写一个系统内核,或者服务器程序,或者全套的系统+应用,我绝对不拦你,但希望你写完这套东西,能把源代码发布出来。
ads 可以认为是一个支持环境,他本身不是一个系统的开发 SDK 。
-------------------------------------
ads 没用过,印象里他还有模拟器,调试器什么的程序。功能上要比 Linux 开发环境,WinCE 环境下面的东西更多更偏向于硬件方面,毕竟 ads 是 arm 出品的,不太可能偏向于软件部分设计。Linux 和 WinCE 都是系统而不是硬件工具。
你可以认为交叉编译器是一个应用程序,一个输出器。把源代码输出为 arm 的代码,这个应用程序的输出,是靠他自己的环境,而不是当前系统的环境的。
当前系统的各个软件的版本,不能影响交叉编译器输出的环境(理论上,现实有的时候总是从别的地方给你打击……),交叉编译器一般至少有 gcc 、binutils 、glibc 库、linux kernel 头文件。
在软件需求上。
头文件谁都不依赖,glibc 只需要内核头文件,其他程序全都依赖于 glibc 。也就是所有程序都不依赖内核,仅仅是依赖于内核头文件。
gcc 和 binutils 是把程序源代码根据上面各个环节的需提供的功能来输出为上面环节里面的二进制程序。依赖你当前环境的,只有 gcc 和 binutils 两个程序的执行、控制环节。只有他们两个依赖的,而不是你的交叉编译后的程序。
至于编译器版本的选择,新版本功能更好,旧版本兼容更好。
这个要看你的实际需要了。应用程序源代码也调编译器的,同时也依赖于软件库的功能。
arm 开发建议稳定、兼容优先。当然也可以尝试最新的编译环境,来获取更好的优化(前提是还有什么代码优化的话)。
另外,团IDC网上有许多产品团购,便宜有口碑
B. redhat9.0如何安装arm-linux-gcc交叉编译器
gcc交叉编译。。。真折腾~
编译先决条件:安装gmp mpfr mpc,版本需要和gcc对应,不对应gcc在make时也会提示
安装gmake和redhat9自带的gcc,安装盘没有yum一下也行~
有个能上google的好网络,gcc编译一定会发现bug的,这时请暂时忘记度娘吧
编译过程:
configure,configure的时候指定参数,不知道的话configure --help自己看,看不懂的参数查一下, multilib这个属性会造成很多麻烦,但是如果你要编个能出64包的32gcc就需要关注,不能简单粗暴的disable的(网上多少坑爹的告诉的--disable-multilib,然后出不了64的so有木有),这里需要确保configure的都ok,有问题可以看config.log,接下来就是make,make install
最痛苦是make~开源软件很多bug有木有,编译一次半小时一小时没了有木有,error时~请google之,很多国外开源论坛之类能搜到patch的,这个patch一般就是一坨代码,告诉你怎么改源码~在你的gcc源码找到他,改之~然后一般出错出个4、5次,一般就编译通过的
make install,完工~
C. cygwin 中如何安装arm-linux-gcc交叉编译器
交叉编译工具链作为嵌入式Linux开发的基础,直接影响到嵌入式开发的项目进度和完成质量。由于目前大多数开发人员使用Windows作为嵌入式开发的宿主机,在Windows中通过安装VMware等虚拟机软件来进行嵌入式Linux开发,这样对宿主机的性能要求极高。Cygwin直接作为Windows下的软件完全能满足嵌入式Linux的开发工作,对硬件的要求低及方便快捷的特点成为嵌入式开发的最佳选择。
目前网络上Cygwin下直接可用的交叉编译器寥寥无几且版本都比较低,不能满足开源软件对编译器版本依赖性的要求(如低版本工具链编译U-Boot出现软浮点问题等);Crosstool等交叉工具链制作工具也是更新跟不上自由软件版本的进度;同时系统介绍Cygwin下制作交叉编译器方面的资料很少。针对上述情况,基于最新版gcc等自由软件构建Cygwin下的交叉编译器显得尤为迫切和重要。
构建前准备工作
首先Cygwin下必须保证基本工具比如make}gcc等来构建bootstrap-gcc编译器,这可以在安装Cygwin时选择安装。参照gcc等安装说明文档来在Cygwin下查看是否已经安装,如输入gcc --v等。
源码下载
gcc-4.5.0的编译需mpc的支持,而mpc又依赖gmp和mpfr库。从各个项目官方网站上下载的最新的源码:
binutils-2.20. l .tar.bz2
gmp-S.O. l .tar.bz2
mpc-0.8.2.tar.gz
mpfr-3.O.O.tar.bz2
gcc-4.S.O.tar.bz2
linux-2.6.34.tar.bz2
glibc-2.11.2.tar.bz2
glibc-ports-2. l l .tar.bz2
gdb-7. l.tar.bz2
设置环境变量
HOST:工具链要运行的目标机器;BUILD:用来建立工具链的机器;TARGET工具链编译产生的二进制代码可以运行的机器。
BUILD=i686-pc-cygwin
HOST=i686-pc-cygwin TARGET=arm-linux
SYSROOT指定根目录,$PREFIX指定安装目录。目标系统的头文件、库文件、运行时对象都将被限定在其中,这在交叉编译中有时很重要,可以防止使用宿主机的头文件和库文件。本文首选$SYSROOT为安装目录,$PREFIX主要作为glibc库安装目录。
SYSROOT=/cross-root
PREFIX=/cross-root/arm-linux
由于GCC-4.5.0需要mpfr,gmp,mpc的支持,而这三个库又不需要交叉编译,仅仅是在编译交叉编译链时使用,所以放在一个临时的目录。
TEMP_PREFIX=/build-temp
控制某些程序的本地化的环境变量:
LC ALL=POSIX
设置环境变量:
PATH=$SYSROOT/bin:儿in:/usr/bin
设置编译时的线程数f31减少编译时间:
PROCS=2
定义各个软件版本:
BINUTILS V=2.20.1
GCC V=4.5.0
GMP V=5.0.1
MPFR V=3.0.0
MPC V二0.8.2
LINUX V二2.6.34
GLIBC V=2.11.2
GLIBC-PORTS V=2.11
GDB V=7.1
构建过程详解
鉴于手工编译费时费力,统一把构建过程写到Makefile脚本文件中,把其同源码包放在同一目录下,执行make或顺次执行每个命令即可进行无人值守的编译安装交叉工具
链。以下主要以Makefile执行过程为主线进行讲解。
执行“make”命令实现全速运行
可在Cygwin的Shell环境下执行“make>make.log 2>&1”命令把编译过程及出现的错误都输出到make.log中,便于查找:
all:prerequest install-deps install-cross-stage-one install-
cross-stage-two
预处理操作
"make prerequest',命令实现单步执行的第一步,实现输出变量、建立目录及解压源码包等操作。0'set十h”关闭bash的Hash功能,使要运行程序的时候,shell将总是搜索PATH里的目录[4]。这样新工具一旦编译好,shell就可以在$(SYSROOT)/bin目录里找到: prerequest:
set +h&&mkdir -p $(SYSROOT)/bin&&
mkdir -p $(PREFIX)/include&&
mkdir -p $(TEMP一REFIX)&&
export PATH LCes ALL&&
tar -xvf gmp-$(GMP_V).tar.bz2&&
tar -xvf mpfr-$(MPFR_V).tar.bz2&&
tar -xvf mpc-$(MPC_V).tar.gz&&
tar -xvf binutils-$(BINUTILS_V).tar.bz2&&
tar -xvf gcc-$(GCC_V).tar.bz2&&
tar -xvf linux-$(LINUX_V).tar.bz2&&
tar -xvf glibc-$(GLIBC_V).tar.bz2&&
tar -xvf glibc-ports-$(GLIBC-PORTS_V).tar.bz2&&
my glibc-ports-$(GLIBC-PORTS_V)
glibc-$(GLIBC_V)/ports&&
tar -xvf gdb-$(GDB V).tar.bz2
非交叉编译安装gcc支持包mpc
00make install-deps”命令实现单步执行的第二步,实现mpc本地编译,mpc依赖于gmp和mpfr
install-deps:gmp mpfr mpc
gmp:gmp-$(GMP_V)
mkdir -p build/gmp&&cd build/gmp&&
../../gmp-*/configure
--disable-shared --prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
mpfr:mpfr-$(MPFR_V)
mkdir -p b-uild/mpfr&&cd build/mpfr&&
../..//mpfr-*/configure
LDF'LAGS="-Wl,-search_paths_first”--disable-shared
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS) all&&$(MAKE) install
mpc: mpc-$(MPC_V) gmp mpfr
mkdir -p build/mpc&&cd build/mpc&&
../../mpc-*/configure
--with-mpfr=$(TEMP PREFIX)
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
交叉编译第一阶段
"make install-cross-stage-one',命令实现单步执行的第三步,编译安装binutils,bootstrap-gcc和获取Linux内核头文件:
install-cross-stage-one:cross-binutils cross-gcc get-kernel-headers
编译安装binutils
cross-binutils: binutils-$(BINUTILS_ V)
mkdir -p build/binutils&&cd build/binutils&&
../..//binutils-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-nls&&
$(MAKE)j$(PROCS)&&$(MAKE) install
编译安装bootstrap-gcc。使用一disable-shared参数的意思是不编译和安装libgcc_ eh.a文件。glibc软件包依赖这个库,因为它使用其内部的一lgcc_eh来创建系统[6]。这种依赖
性,可通过建立一个指向libgcc.a符号链接得到满足,因为该文件最终将含有通常在libgcc- eh.a中的对象(也可通过补丁文件实现)。
cross-gcc:gcc-$(GCC_V)
mkdir -p build/gcc&&cd build/gcc&&
二//gcc-*/configure
--target=$(TARGET)--prefix=$(SYSROOT)
--disable-nls --disable-shared --disable-multilib
--disable-decimal-float--disable-threads
--disable-libmudflap --disable-libssp
--disable-libgomp --enable-languages=c
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) -j$(PROCS)&&$(MAICE) install&&
In -vs libgcc.a'arm-linux-gcc -print-libgcc-file-name I
sed's/libgcc/& eh/'}
获取Linux内核头文件:
get-kernel-headersainux-$(LINUX_V)
cd linux-$(LINUX_V)&&
$(MAICE) mrproper&&$(MAKE) headers check&&
$(MAKE) ARCH=arm&&
INSTALLes HDR_ PATH=dest headers_ install&&
find dest/include
(-name .install一。-name ..installNaNd)-delete&&
cp -rv desdinclude/* $(PREFIX)/include
交叉编译第二阶段
编译安装glibc、重新编译安装binutils、完整编译安装gcc和编译安装gdb o "make install-cross-stage-two',命令实现单步执行的第四步: install-cross-stage-two:cross-glibc cross-rebinutils cross-g++ cross-gdb
编译安装glibca glib。的安装路径特意选为$(PREFIX),与gcc更好找到动态链接库也有关系,选在$(SYSROOT)提示找不到crti.o; glibc已经不再支持i386; glibc对ARM等的处理器的支持主要通过glibc-ports包来实现;正确认识大小写敏感(Case Sensitive)和大小写不敏感(CaseInsensitive)系统,大小写敏感问题主要影响到glibc,是交叉编译glibc成功的关键:Cygwin帮助手册中可知Cygwin是默认大小写不敏感的n},但是UNIX系统是大小写敏感的,这也是Cygwin和UNIX类系统的一个区别。通过作者自行参考制作的glibc-2.11.2-cygwin.patch补T使glibc变为Case-Insensitive,此补丁主要是对大小写敏感问题改名来实现。
交叉编译过程中安装的链接器,在安装完Glibc以前都无法使用。也就是说这个配置的forced unwind支持测试会失败,因为它依赖运行中的链接器。设置libc_ cvforced unwind=yes这个选项是为了通知configure支持force-unwind,而不需要进行测试。libc cv_c_cleanup=yes类似的,在configure脚本中使用libc_cv_c cleanup=yes,以便配置成跳过测试而支持C语言清理处理。
cross-glibc:glibc-$(GLIBC_V)
cd glibc-$(GLIBC_V)&&
patch -Np 1 –i...//glibc-2.11.2-cygwin.patch&&
cd..&&mkdir -p build/glibc&&
cd build/glibc&&
echo"libc cv_forcedes unwind=yes">config.cache&&
echo "libc cv_c_cleanup=yes">>config.cache&&
echo "libc cv_arm_tls=yes">>config.cache&&
../../glibc-*/configure --host=$(TARGET)
--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)
--prefix=$(PREFIX)--disable-profile
--enable-add-ons --enable-kernel=2.6.22.5
--with-headers=$(PREFIX)/include
--cache-file=config.cache&&
$(MAKE)&&$(MAKE) install
重新编译安装binutils。编译之前要调整工具链,使其
指向新生成的动态连接器。
调整工具链:
SPECS=
'dirname $(arm-linux-gcc -print-libgcc-file-name)'/specs
arm-linux-gcc -mpspecs
sed -e 's@/lib(64)\?/ld@$(PREFTX)&@g' -e ,}/}}*cPP}$/{n;s,$,-isystem $(PREFIX)/include,}"
>$SPECS
echo "New specs file is: $SPECS"
unset SPECS
测试调整后工具链:
echo 'main(川’>mmy.c
arm-linux-gcc
-B/cross-root/arm-linux/lib mmy.c
readelf -1 a.out I grep’:/cross-roobarm-linux'
调整正确的输出结果:
[Requesting program interpreter: /tools/lib/ld-linux.so.2j
一切正确后删除测试程序:
rm -v mmy.c a.out
重新编译binutils。指定--host,--build及--target,否则配置不成功,其config.guess识别能力不如gcc做的好。
cross-rebinutils: binutils-$(BINUTILS_V)
mkdir -p build/rebinutils&&
cd build/rebinutils&&CC="$(TARGET)-gcc
-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&
RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--disable-nls
--with-lib-path=$(PREFIX)/lib&&
$(MAKE)--$(PROCS)&&$(MAKE) install
高于4.3版的gcc把这个编译当作一个重置的编译器,并且禁止在被一prefix指定的位置搜索startfiles。因为这次不是重置的编译器,并且$(SYSROOT)目录中的startfiles对于创
建一个链接到$$(SYSROOT)目录库的工作编译器很重要,所以我们使用下面的补丁,它可以部分还原gcc的老功能tai . patch -Npl –i../gcc-4.5.0-startfiles_fix-l.patch
在正常条件下,运行gcc的fixincludes脚本,是为了修复可能损坏的头文件。它会把宿主系统中已修复的头文件安装到gcc专属头文件目录里,通过执行下面的命令,可以抑
制fixincludes脚本的运行[9](此时目录为/gcc-4.5.0)。
cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@'
gcc/Makefile.in.orig > gcc/Makefile.in
下面更改gcc的默认动态链接器的位置,使用已安装在/cross-root/ann-linux目录下的链接器,这样确保在gcc真实的编译过程中使用新的动态链接器。即在编译过程中创建的所有
二进制文件,都会链接到新的glibc文件
for file in
$(find gcc/config -name linux64.h-o -name linux.h –o -name sysv4.h)
do cp -uv $file{,.orig}
sed -a 's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g’-e's@/usr@/cross-rootlarm-linux@g' $file.orig>$file echo‘
#undef STANDARD INCLUDE DIR
#define STANDARD_ INCLUDE DIR "/cross-root/arm-linux/include"
#define STANDARD STARTFILE PREFIX 1 "/cross-root/arm-linux/lib"
#define STANDARD_ STARTFILE_ PREFIX_ 2””’>>$file
touch $file.orig done
完整编译安装gcc。最好通过指定--libexecdir更改libexecdir到atm-linux目录下。--with-local-prefix选项指定gcc本地包含文件的安装路径此处设为$$(PREFIX),安装后就会在内核头文件的路径下。路径前指定$(Pwd)则以当前路径为基点,不指定则默认以/home路径为基点,这点要注意。
cross-g++:gcc-$(GCC-)
mkdir -p build/g十+&&cd build/g++&&
CC="$(TARGET)-gcc AR=$(TARGET)-ar&&
-B/cross-roodarm-linux/lib/"&&
RANLIB=$(TARGET)-ranlib&&
..//gcc-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)
--enable-clocale=gnu --enable-shared
--enable-threads=posix --enable -cxa_atexit
--enable-languages=c,c++--enable-c99
--enable-long-long --disable-libstdcxx-pch
--disable-libunwind-exceptions
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) LD_IBRARY_ATH=
$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&
$(MAKE) install
编译安装gdb,至此完成整个工具链的制作。
cross-gdb: gdb-$(GDB V)
mkdir -p build/gdb&&cd build/gdb&&
../../gdb-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-werror&&
$(MAKE)-j$(PROCS)&&$(MAKE) install
“make clean”命令清除编译生成的文件和创建解压的文件夹
.PHONY:clean
dean:
rm -fr $(TEMP_PREFIX) build
binutils-$(BINUTIL,S_V) gcc-$(GCC_V)
glibc-$(NEWL.IB_V) gdb-$(GDB_V)
gmp-$(GMP_V) mpc-$(MPC_V) mpfr-$(MPFR_V)
工具链测试
命令行中输入以下内容:
echo 'main(){}’>mmy.c
arm-linux-gcc -o mmy.exe mmy.c
file mmy.exe
运行正常的结果:
mmy.exe: ELF 32-bit LSB executable, ARM, version 1,for GNU/Linux 2.6.22, dynamically linked (uses shared libs),not stripped.
D. Linux系统中如何安装交叉编译器
交叉编译器通常以 arm-none-linux-gnueabi.tar.bz2 这样的名称发布(不同厂家的不同开发平台,交叉编译工具链的实际名称可能有所差别,请以实际为准),解压命令:
vmuser@Linux-host: ~$ tar xjvf arm-none-linux-gnueabi.tar.bz2
如果希望解压到一个指定的目录,可以先将 arm-none-linux-gnueabi.tar.bz2 压缩包复制到目标目录,然后进入目标目录再运行解压命令,也可以在任意目录解压,通过-C 指定目标目录。假定希望解压到“/home/ctools/”目录,则命令如下:
vmuser@Linux-host: ~$ tar xjvf arm-none-linux-gnueabi.tar.bz2 -C /home/ctools/
在终端中添加环境变量,需要每次打开终端都设置,也很麻烦。可以考虑将设置的过程添加到系统配置文件中。/etc/profile 是系统全局的配置文件,在该文件中设置交叉编译器的路径,能够让登录本机的全部用户都可以使用这个编译器。
打开终端,输入“sudo vi /etc/profile”命令,打开/etc/profile 文件,在文件末尾添加:
export PATH=$PATH:/home/ctools/arm-2011.03/bin/
然后输入“. /etc/profile”(点+空格+文件名),执行 profile 文件,使刚才的改动生效。如果没有书写错误,此时打开终端,输入 arm-none-linux-gnueabi-,然后按键盘 TAB 键,同样可以看到很多 arm-none-linux-gnueabi-开头的命令。
这些周立功那边很多的,不知道你有没去看过。
E. 如何建立Linux下的ARM交叉编译环境
首先安装交叉编译器,网络“arm-linux-gcc”就可以一个编译器压缩包。
把压缩包放到linux系统中,解压,这样就算安装好了交叉编译器。
设置编译器环境变量,具体方式网络。如打开 /etc/bash.bashrc,添加刚才安装的编译器路径 export PATH=/home/。。。/4.4.3/bin:$PATH。这样是为了方便使用,用arm-linux-gcc即可,不然既要带全路径/home//bin/arm-linux-gcc,这样不方便使用。
编译c文件。和gcc编译相似,把gcc用arm-linu-gcc代替就是了。编译出来的就可以放到arm上运行了。</ol>
F. 如何在linux虚拟机里安装交叉编译
安装Arm-Linux交叉编译器正确的方法:
首先我用的是天嵌自带的交叉编译器EABI-4.3.3_EmbedSky_20100610.tar.bz2,
1. 首先建一个存放交叉编译器的目录,我建的目录的绝对路径是:/opt/TQ (TQ就是我建的目录)
2. 解压EABI-4.3.3_EmbedSky_20100610.tar.bz2:
tar xjvf EABI-4.3.3_EmbedSky_20100610.tar.bz2
该文件解压后,就会在TQ这个目录中生成两个目录:opt,usr;
3. 添加环境变量 :
在/etc/profile中添加
# Path manipulation
if [ "$EUID" = "0" ]; then
pathmunge /sbin
pathmunge /usr/sbin
pathmunge /usr/local/sbin
pathmunge /opt/TQ/opt/EmbedSky/4.3.3/bin/
fi
添加完后 source /etc/profile 使他生效;
4. 在控制台执行以下命令:
cp /opt/TQ/opt/EmbedSky/4.3.3/bin /usr/local/arm
总结:第3步和第4步这两步少了一步就会出现以下错误:
arm-none-linux-gnueabi-gcc: error trying to exec 'cc1': execvp: No such file or directory
经验:若在解压时 用下面的命令:
tar xjvf EABI-4.3.3_EmbedSky_20100610.tar.bz2 -C/
就可以省去第四步
-C / :的意识是解压到指定目录,这里指根目录,由于该压缩包内部的目录结构本身包含usr/local/arm,所以解压到根目录实际上就是把文件解压到/usr/local/arm文件夹下。
G. 在Ubuntu下,安装arm-linux-gcc交叉编译器,环境变量也都设置好了,运行arm-linux-gcc 提示未找到命令
先找一下有无arm-linux-gcc这个文件:
find / -xdev -name arm-linux-gcc
再看一下有无执行权限:
ls -l arm-linux-gcc
再用绝对路径执行一下看看:
/path/to/arm-linux-gcc -v
H. 如何安装arm-liunx交叉编译环境
sh ./arm-elf-tools-20040427.sh安装
----------------------------------------------
一、准备工作
首先需要一台运行Linux操作系统的PC以完成我们的编译工作。
其次要准备如下一些源文件。
1、源文件准备
binutils-2.14.tar.gz
ftp://ftp.gnu.org/gnu/binutils/binutils-2.14.tar.gz
gcc-core-2.95.3.tar.gz
ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.3/gcc-core-2.95.3.tar.gz
gcc-g++2.95.3.tar.gz
ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.3/gcc-g++-2.95.3.tar.gz
glibc-2.2.4.tar.gz
ftp://ftp.gnu.org/gnu/glibc/glibc-2.2.4.tar.gz
glibc-linuxthreads-2.2.4.tar.gz
ftp://ftp.gnu.org/gnu/glibc/glibc-linuxthreads-2.2.4.tar.gz
linux-2.4.21.tar.gz
ftp://ftp.kernle.org/pub/linux/kernel/v2.4/linux-2.4.21.tar.gz
patch-2.4.21-rmk1.gz # linux kernel patch for arm
ftp://ftp.arm.linux.org.uk/pub/linux/arm/kernel/v2.4/patch-2.4.21-rmk1.gz
binutils-2.14.tar.gz这个压缩包包含有ld,ar,as等一些产生或者处理二进制文件的工具。
gcc-core-2.95.3.tar.gz这个压缩包是GCC的主体部分,GCC是GNU Compiler Collection的简称,顾名思义,它能够编译很多种高级语言,例如C、C++,Java等,而这个压缩包中含有C编译器,及公共部分,而对其他语言的支持,采用另外的压缩包单独发布。
gcc-g++2.95.3.tar.gz,这个压缩包就是为使GCC能够编译C++程序而单独发布的。
glibc-2.2.4.tar.gz,libc是很多用户层应用都要用到的库,kernel和bootloader不需要这个库的支持,这个库主体部分封装在这个压缩包内。
glibc-linuxthreads-2.2.4.tar.gz,这是Libc用于支持Posix线程而单独发布的一个压缩包。
linux-2.4.21.tar.gz,这个压缩包就是Linux的内核。
patch-2.4.21-rmk1.gz,这个压缩包是用来给Linux内核打补丁,以使其可以支持ARM的硬件平台。
2、工作目录搭建
我们创建如下的目录树结构
mkdir arm
mkdir tool-chain
mkdir build-dir
mkdir src-dir
mkdir setup-dir
mkdir kernel
arm这个目录是我们的最顶层工作目录,我们所有的编译工作都在这里完成。
tool-chain这个目录是我们交叉编译工具的安装位置,它下面的bin子目录存放我们创建好的编译器,汇编器,连接器,以及编译好的C库也会安装到这个目录之下。
setup-dir这个目录用来存放我们下载的压缩包。
src-dir这个目录用于存放binutils,gcc,glibc解压之后的源文件。
kernel这个目录用来存放内核文件,对内核的配置、编译工作将在这个目录中完成。
build-dir用来编译src-dir中的源文件,具体就是binutils,gcc,glibc的编译工作将在这个目录下完成。这种源文件目录和编译目录分离的编译方式是GNU所推荐的。
cd ./src-dir
tar –xvzf ../setup-dir/ binutils-2.14.tar.gz
tar –xvzf ../setup-dir/ gcc-core-2.95.3.tar.gz
tar –xvzf ../setup-dir/ glibc-2.2.4.tar.gz
tar –xvzf ../setup-dir/ glibc-linuxthreads-2.2.4.tar.gz –directory=./glibc-2.2.4
这样我们在src-dir目录下就形成了3个源文件目录binutils-2.14,gcc-core-2.95,3,glibc-2.2.4,其中分别存放着binutils tools,gcc,glibc的源代码。接下来我们到build-dir中创建3个与这三个源文件目录对应的编译目录。
cd ../build-dir
mkdir ../build-dir/build-binutils
mkdir ../build-dir/build-gcc
mkdir ../build-dir/build-glibc
我们将在这三个目录中完成对binutils tools, gcc, glibc的配置和编译工作。下面还要把内核文件解压到kernel目录下,并打补丁。
cd ../kernel
tar –xvzf ../setup-dir/ linux-2.4.21.tar.gz
cd ./linux-2.4.21
patch –p1 < ../../setup-dir/ patch-2.4.21-rmk1
二、开始创建
1、 确定几个系统变量
cd ../../
export TARGET=arm-linux
export PREFIX=../arm/tool-chain
export TARGET_PREFIX=$PREFIX/$TARGET
export KERNEL_SOURCE_LOCATION=../arm/kernel/linux-2.4.21
export PATH=$PREFIX/bin:$PATH
几个系统变量经常要用到,TARGET定义了目标机,PREFIX是工具链的安装目录,KERNEL_SOURCE_LOCATION是内核文件位置。
TARGET这个变量对于ARM体系的目标机来说取值为arm-linux,对于其他体系结构的机器如ppc,mips的取值的详细清单可以参见glibc目录下的INSTALL文档.
2、 创建binutils
运行如下命令来创建binutils
cd ./build-dir/build-binutils
configure ../../src-dir/binutils-2.14/configure –target=$TARGET –prefix=$PREFIX
make
make install
这时$PREFIX/bin下创建了一些文件,包括arm-linux-ld,arm-linux-as等。
3、 编译内核
cd ../../kernel/linux-2.4.21
改Makefile文件使
ARCH = arm
CROSS_COMPILE=arm-linux-
make menuconfig
在System Types中选择正确的硬件类型
make dep
之后执行如下操作
mkdir $TARGET_PREFIX/include
cp dR $KERNEL_SOURCE_LOCATION/include/arm-asm \
RGET_PREFIX/include/asm
cp dR $KERNEL_SOURCE_LOCATION/include/linux \
RGET_PREFIX/include/linux
4、 创建boot-trap gcc,这个GCC没有glibc库的支持,所以只能用于编译内核,bootloader等,后面创建C库也要用到这个编译器,所以创建它主要是为创建C库做准备,如果只想编译内核和bootloader那么,就可以到此结束。
cd ../../build-dir/build-gcc
../../src-dir/gcc-2.95.3/configure –target=$TARGET –prefix=$PREFIX \
--with-headers=$ERNEL_SOURCE_LOCATION/include –enable-language=c \
--disable-threads
然后修改src-dir/gcc-2.95.3/gcc/config/arm/t-linux文件,在
TARGET_LIBGCC2_CFLAGS中添加如下两个定义
-Dinhibit-libc –D__gthr_posix_h
make
make install
这时$PREFIX/bin下创建了一些文件,主要创建了arm-linux-gcc。
5、 创建gblic
cd ../build-glibc
export CC=arm-linux-gcc
../../src-dir/glibc-2.2.4/configure –host=$TARGET –prefix=$TARGET_PREFIX \
--enable-add-ons
make
make install
将glibc库安装完之后,我们要到$TARGET_PREFIX/lib这个目录下修改libc.so文件,将其中
GROUP(/lib/libc.so.6 /lib/libc_noshared.a)
这个命令脚本中的/lib 的绝对路径去掉, 也就是改为如下的形式
GROUP(libc.so.6 libc_noshared.a)
这样下一步创建完整的编译器时,才不至于导致错误.
6、 创建功能健全的GCC,并创建G++
在成功创建了libc之后,我们就可以创建功能丰富的GCC编译器了,并且可以创建支持编译C++程序的G++。
cd ../../src-dir
tar –xvzf ../setup-dir/ gcc-g++2.95.3.tar.gz
cd ../build-dir/build-gcc
export CC=gcc
../../src-dir/gcc-2.95.3/configure –target=$TARGET –prefix=$PREFIX \
–enable-language=c,c++
然后修改src-dir/gcc-2.95.3/gcc/config/arm/t-linux文件,在
TARGET_LIBGCC2_CFLAGS中去除如下两个定义
-Dinhibit-libc –D__gthr_posix_h
make
make install
7,至此我们成功的创建了ARM Linux的交叉编译工具。
------------------------------------------------------
可以去www.arm16.com看看
I. 安装完交叉编译器后输入arm-linux-gcc命令出现arm-none-linux-gnueabi: no input files是怎么回事
交叉编译器是用来编译arm处理器对应的linux代码或者驱动代码的。
你输入arm-linux-gcc实际上是要求进行编译操作
编译操作需要找到makefile文件。
你只输入了arm-linux-gcc,就说明没有指定编译路径,所以在当前目录下查找makefile。
如果当前路径下没有makefile,就会提示arm-none-linux-gnueabi: no input files。
建议到网上找找交叉编译器使用方法的文章,了解一下再继续使用。