‘壹’ 极限的运算法则是什么,请不吝赐教
设
(1)极限运算法则应用前提扩展阅读:
由来:
与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用;
古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。
‘贰’ 极限的运算法则在用之前需要注意哪些问题
若b不等于0,yn不等于0,则limxn/yn=a/b
(n趋于无穷,以后略)
如果你已经知道乘法是怎么证明的,则现在只需证明lim1/yn=1/b
|1/yn-1/b|=|(yn-b)/ynb|<=2/|b^2|*|yn-b|
令ε0=|b|/2>0,存在n1,使得当n>n1时,有|yn-b|<ε0
|yn|>=|b|-|yn-b|>=|b|-ε0=|b|/2
任取ε>0,由limyn=b,存在n2,使得当n>n2时,有|yn-b|<|b^2|*ε/2
取n=max(n1,n2),当n>n时,有
|1/yn-1/b|=|(yn-b)/(byn)|<(2/|b|^2)*(ε*|b|^2/)=ε
即lim1/yn=1/b
‘叁’ 极限四则运算法则的前提是什么什么时候不能用
使用极限的四则运算法则时,应注意它们的条件,当每个函数的极限都存在时,才可使用和、差、积的极限法则。当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则。
当有一个极限本身是不存在的,则不能用四则运算法则。
极限的四则运算公式
1、lim(f(x)+g(x))=limf(x)+limg(x);
2、lim(f(x)-g(x))=limf(x)-limg(x);
3、lim(f(x)*g(x))=limf(x)*limg(x);
4、lim(f(x)/g(x))=limf(x)/limg(x),limg(x)不等于0;
5、lim(f(x))^n=(limf(x))^n。
注意条件:以上limf(x),limg(x)都存在时才成立。
(3)极限运算法则应用前提扩展阅读
极限的性质
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等;
2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。
3、和实数运算的相容性:如果两个数列{xn} ,{yn}都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn}的极限和{yn}的极限的和。
4、与子列的关系:数列{xn}与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列 收敛的充要条件是:数列{xn}的任何非平凡子列都收敛。
‘肆’ 极限的四则运算在什么情况下不能用
1.极限的四则运算、任何复合运算,只要是定式之间的运算都成立;
2.出错。
3.极限不存在。
4.运用乘除法运算,乘号前后不能出现0乘以∞的情况,除法不能出现分子分母同趋于无穷大,或同趋于0的情况。
‘伍’ 运用极限法则时只有各项极限什么才能适用
使用极限的四则运算法则时,应注意它们的条件,当每个函数的极限都存在时,才可使用和、差、积的极限法则。当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则。
当有一个极限本身是不存在的,则不能用四则运算法则。
极限的四则运算公式
1、lim(f(x)+g(x))=limf(x)+limg(x)。
2、lim(f(x)-g(x))=limf(x)-limg(x)。
3、lim(f(x)*g(x))=limf(x)*limg(x)。
4、lim(f(x)/g(x))=limf(x)/limg(x),limg(x)不等于0。
5、lim(f(x))^n=(limf(x))^n。
注意条件:以上limf(x),limg(x)都存在时才成立。
极限的性质
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。
3、和实数运算的相容性:如果两个数列{xn} ,{yn}都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn}的极限和{yn}的极限的和。
4、与子列的关系:数列{xn}与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列 收敛的充要条件是:数列{xn}的任何非平凡子列都收敛。
‘陆’ 什么时候求极限能用四则运算
一般来说,只要代入不是为0或者无穷的就可以,也就是直接可以算出来的就行比如:limsinx/xx→0当然就不能是sin0/0。
关于极限四则运算:
1)极限理论在高等数学中占有重要的地位,它是建立许多数学概念(如函数的连续性、导数、定积分等)的必不可少的工具。因此,极限运算是高等数学课程中基本运算之一。
2)每一个极限运算都有它适合的方法。一部分极限运算要使用极限的四则运算法则。使用极限的四则运算法则时,应注意它们的条件,当每个函数的极限都存在时,才可使用和、差、积的极限法则;当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则。
3)为了简化极限的运算,我们往往需要对函数作代数或三角的恒等变形。
例:
‘柒’ 极限运算法则只能是两个有界函数才能用
1、“两个函数乘积的极限等于每一部分极限的乘积”,前提条件是每一部分的极限都存在,现在cos(1/x)的极限是不存在的。 应该看作是“无穷小与有界函数的乘积”,sinx是无穷小,cos(1/x)有界,乘积后还是无穷小,所以结果是0。
‘捌’ 极限四则运算法则的前提是什么什么时候不能用
使用极限的四则运算法则时,应注意它们的条件,当每个函数的极限都存在时,才可使用和、差、积的极限法则。当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则。
当有一个极限本身是不存在的,则不能用四则运算法则。
(8)极限运算法则应用前提扩展阅读:
用极限思想解决问题的一般步骤可概括为:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想象,因此可以忽略不计。
‘玖’ 高等数学极限运算法则
因为函数趋于无穷大时极限不存在,而极限的运算法则的前提条件是每一个函数的极限都存在,所以无穷小适用 ,无穷大不能用,遇到无穷大时,要利用无穷大与无穷小互为倒数的关系化为无穷小再做。
‘拾’ 函数极限四则运算法则使用的前提是什么,两函数都必须要极限存在吗
答:使用的前提是两个凾数必须都具有极限。