Ⅰ 结合实际,谈谈如何利用大数据解决各种中的痛点难点
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop
Ⅱ 区块链解决了什么问题吗
区块链最重要的是解决了中介信用问题。在过去,两个互不认识和信任的人要达成协作是难的,必须要依靠第三方。比如支付行为,在过去任何一种转账,必须要有银行或者支付宝这样的机构存在。但是通过区块链技术,比特币是人类第一次实现在没有任何中介机构参与的情况下,完成双方可以互信的转账行为。这是区块链的重大突破。(交易区块链资产上“币汇交易所”)
如果用一句话说明就是:去中心化。
区块链(BlockChain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。
所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构, 并以密码学方式保证的不可篡改和不可伪造的分布式账本。
广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。
优点:
1)算法简单,容易实现;
2)节点间无需交换额外的信息即可达成共识;
3)破坏系统需要投入极大的成本。
缺点:
1)浪费能源;
2)区块的确认时间难以缩短;
3)新的区块链必须找到一种不同的散列算法,否则就会面临比特币的算力攻击;
4)容易产生分叉,需要等待多个确认;
5)永远没有最终性,需要检查点机制来弥补最终性。
Ⅲ 算法就是解决生活难题的方法而不能用算计
计算方法又称“数值分析“.是为各种数学问题的数值解答研究提供最有效的算法,而算法不仅仅是数学问题,它是解决一切问题的方法和步骤.算法的内容比计算方法涵盖的内容更为广泛所以C是错误的.
故选C.
Ⅳ 智能优化算法解决了哪些问题
智能优化主要是用来求最优解的,通过多次迭代计算找出稳定的收敛的最优解或近似最优解,例如复杂的单模态或多模态函数的求最值问题。
Ⅳ 算法解决的的实际问题有哪些
PageRank 算法。Google最早的搜索算法。这算法解决了对搜索结果排序的问题。这算法牛逼吗?当然,它造就了今天的Google。
Ⅵ 越来越火爆的人工智能,将会对物流行业产生怎样的影响
据VentureBeat报道,在下了订单后,每个人都想知道,你的包裹是如何在几个小时后出现在门口的?这是个非常复杂的过程,涉及到供应商、制造商、批发商、零售商以及终端消费者。这个过程被统称为供应链管理(SCM),其中物流是负责处理商品流动和运输的那部分。
林德布鲁姆说:“我们不断地观察市场,并相信自己正开发更好的技术。”由于对可靠性的迫切需要,C.H. Robinson建立并运营自己的数据中心,若需要额外计算能力则可求助于云计算。拥有数据中心的资源让C.H. Robinson可需要的时候迅速进行调整,但依然需要利用闲置的系统进行研发。
除了灵活性外,拥有数中心还能控制隐私。林德布鲁姆强调称:“对于客户来说,我们是运输管理系统的云服务供应商。作为核心云供应商,我们拥有同样的技术,但我们知道数据在哪里,我们可以控制它,我们可以兑现为客户保密的承诺。许多人对与我们合作感到更放心。”
林德布鲁姆说:“在我们这个行业,技术是非常重要的因素。”物流和供应链领域的其他巨头也如此认为,并大量斥资研发AI解决方案。DHL希望利用自动汽车降低成本,Active Ants开发可穿戴技术以永华仓库任务,Locus Robotics开发可穿戴机器人,本田利用智能手机应用实时追踪货物。
Ⅶ 数据标注行业目前的痛点是什么
人工智能行业,痛点是数据领域无法满足AI商业化落地的需求。
自从2012年深度学习在图像和语音方面产生重大突破后,人工智能便真正具备了走出实验室步入市场的能力,2016年AlphaGo的胜利再次引爆行业,成功唤起了中国市场的兴趣,时至今日,人工智能的商业化在中国得到了长足发展,在安防、金融、企服等领域纷纷落地开花,同时也真正意义上衍生出了一套完整的产业链。
目前人工智能商业化在算力、算法层面已达到阶段性基本成熟,不过想要更加契合落地需求、解决行业具体痛点,还需要大量经过标注处理的相关数据做算法训练支撑。
人工智能行业内有一个很重要的共识:数据集质量的高低直接决定最终模型效果的好坏。
换句话说,数据对于模型性能的贡献是最大的,数据越多越丰富、代表性越强、模型效果越好,算法的健壮性和鲁棒性就越强。
随着AI企业商业化落地进程的加快,越来越多的企业开始意识到标注数据的重要性。
以自动驾驶为例,目前很多企业都已经生产出自己的无人驾驶汽车样车,并频频出现在公共视野内。
然而,虽然这些样车在实验室内表现良好,但距离真正的商用仍然有很遥远的距离,一个很重要的原因就是真实路况场景与实验室场景差距过大。
在实验室内,只需要少量的道路数据即可满足实验的需要,但是到了真实的道路上,无人驾驶汽车将会遇到很多无法预知的情况,在没有足够数据支撑的前提下,车载电脑无法做出自己的判断,导致潜在的风险剧增。
可以说数据决定了AI的落地程度,更具前瞻性的数据集产品和高度定制化数据服务成为了行业发展的主流。
Ⅷ 人工智能会成为其他行业终结者吗
在星球大战、终结者、攻壳机动队等科幻电影中,人工智能专家是人类顶尖智慧的化身。因为触不可及,所以缺乏真实感。
然而,近年来随着各国、各科技企业纷纷加紧部署人工智能,人工智能已经从几年前还是一个比较学术的科学,演变成相对产业化的高科技行业。越来越多的顶尖人才加入到这个如火如荼的“风口”。
人工智能专家的日常是怎样的?他们的工作场景真的那么高冷吗?这些最聪明的脑袋具备哪些看家本领?又有哪些困惑?他们会成为其他职业的“终结者”吗?
机器的“启蒙老师”
美颜相机中萌萌哒的兔耳朵动态表情包、在线开通基金账户、实时清理互联网中不健康的违规图像、远程抄录家里的水电煤“三表”……“这些我们再熟悉不过的日常,其实都是人工智能专家的‘杰作’。”上海七牛人工智能实验室创办人和负责人彭垚说。
走进由他创办的实验室,浓浓的“极客”气息扑面而来。这个实验室有个奇特的名字——“Ataraxia人工智能实验室”。“Ataraxia是古希腊的一种哲学思想,该哲学流派认为世界的知识和理论都是不完善的,只有通过不断学习才能达到更高的境界。人工智能就是一种机器需要不断学习和认知才能到达的境界。”彭垚说。
除了响亮的名字,实验室的墙壁上还挂满了蓝底科幻海报,上面写着“AI Civilizatoin(人工智能文明)”。区别于到处都是瓶瓶罐罐的传统实验室,人工智能实验室遍布一排排计算机,屏幕上跳动着一行行代码、数据;变形金刚式的中小型机器人错落有致地矗立在办公桌上。一张张年轻的面孔熟练而有节奏地敲打着键盘,有的是算法工程师、有的是数据科学家,还有的是数据标识员……尽管从事的具体工作各不相同,但他们都有一个共同的称谓——“人工智能专家”。
“人工智能专家,可以简单理解为机器的‘启蒙老师’。”彭垚说,算法工程师先负责搭出一个最初步的算法框架,然后,数据科学家再把合适的数据装入算法框架里,通过优化、搭建出第一版机器模型。随后,数据标识员通过给图像、文字等数据做标记,为机器编写出一本附有正确答案的“教科书”,手把手教机器模型如何学习处理不同类别的信息。
在人工智能专家的启蒙和教导下,机器模型经过几天或者一周的学习,就可以自主进行深度学习了。“当机器模型学习的准确率达到及格线,就可以开发成产品、投入试运行,然后一边运行、一边继续学习。一两个月后,机器模型的准确率就会有‘脱胎换骨’的进步。”彭垚说。
“人工智能+”
用算法解决各行各业的“痛点”
“人工智能是计算机科学的一支,它的起始是算法。怎样把数据转化成有效的信息,进而解决各行各业的痛点、辅助其做决策是人工智能专家的愿景。”彭垚说,与长期从事某一个具体行业的上班族不同,人工智能专家需要在各行各业自如转换。
算法模型是最基础的工具,这些工具只有跟不同行业、不同用户的需求结合起来,才会有“用武之地”。“好的人工智能专家需要不断学习不同行业的知识,了解各行业的运行规律、发现他们的痛点,进而有针对性地写算法、建模型、做产品。”彭垚说。
Ⅸ 常用数据挖掘工具有哪些
前段时间国际权威市场分析机构IDC发布了《中国人工智能软件及应用(2019下半年)跟踪》报告。在报告中,美林数据以11%的市场份额位居中国机器学习开发平台市场榜眼,持续领跑机器学习平台市场。在此之前,2019年IDC发布的《IDC MarketScape™:中国机器学习开发平台市场评估》中,美林数据就和BAT、微软、AWS等知名一线厂商共同跻身领导者象限,成为中国机器学习开发平台市场中的领导企业之一。
以上都是对美林数据Tempo人工智能平台(简称:TempoAI)在机器学习开发平台领域领先地位的认可,更说明美林数据在坚持自主创新、深耕行业应用道路上的持续努力,得到了业界的广泛认可,并取得了优异成绩。
点此了解详情
Tempo人工智能平台(TempoAI)为企业的各层级角色提供了自助式、一体化、智能化的分析模型构建能力。满足用户数据分析过程中从数据接入、数据处理、分析建模、模型评估、部署应用到管理监控等全流程的功能诉求;以图形化、拖拽式的建模体验,让用户无需编写代码,即可实现对数据的全方位深度分析和模型构建。实现数据的关联分析、未来趋势预测等多种分析,帮助用户发现数据中隐藏的关系及规律,精准预测“未来将发生什么”。
产品特点:
1 极简的建模过程
TempoAI通过为用户提供一个机器学习算法平台,支持用户在平台中构建复杂的分析流程,满足用户从大量数据(包括中文文本)中挖掘隐含的、先前未知的、对决策者有潜在价值的关系、模式和趋势的业务诉求,从而帮助用户实现科学决策,促进业务升级。整个分析流程设计基于拖拽式节点操作、连线式流程串接、指导式参数配置,用户可以通过简单拖拽、配置的方式快速完成挖掘分析流程构建。平台内置数据处理、数据融合、特征工程、扩展编程等功能,让用户能够灵活运用多种处理手段对数据进行预处理,提升建模数据质量,同时丰富的算法库为用户建模提供了更多选择,自动学习功能通过自动推荐最优的算法和参数配置,结合“循环行”功能实现批量建模,帮助用户高效建模,快速挖掘数据隐藏价值。
2 丰富的分析算法
TempoAI集成了大量的机器学习算法,支持聚类、分类、回归、关联规则、时间序列、综合评价、协同过滤、统计分析等多种类型算法,满足绝大多数的业务分析场景;支持分布式算法,可对海量数据进行快速挖掘分析;同时内置了美林公司独创算法,如视觉聚类、L1/2稀疏迭代回归/分类、稀疏时间序列、信息抽取等;支持自然语言处理算法,实现对海量文本数据的处理与分析;支持深度学习算法及框架,为用户分析高维海量数据提供更加强大的算法引擎;支持多种集成学习算法,帮助用户提升算法模型的准确度和泛化能力。
3 智能化的算法选择
TempoAI内置自动择参、自动分类、自动回归、自动聚类、自动时间序列等多种自动学习功能,帮助用户自动选择最优算法和参数,一方面降低了用户对算法和参数选择的经验成本,另一方面极大的节省用户的建模时间成本。
4 全面的分析洞察
为了帮助用户更好、更全面的观察分析流程各个环节的执行情况, TempoAI提供了全面的洞察功能,通过丰富详实的洞察内容,帮助用户全方位观察建模过程任意流程节点的执行结果,为用户开展建模流程的改进优化提供依据,从而快速得到最优模型,发现数据中隐含的业务价值。
5 企业级的成果管理与应用能力
挖掘分析成果,不仅仅止步于模型展示,TempoAI全面支撑成果管理与应用,用户在完成挖掘流程发布后,可基于成果构建服务或调度任务等应用,在成果管理进行统一分类及管理,可根据业务需求选择应用模式:调度任务、异步服务、同步服务、流服务及本地化服务包,满足工程化的不同诉求。提供统一的成果分类统计、在线数量变化趋势、日活跃数量变化趋势、调用热度、失败率排名等成果统计功能,同时提供所有服务的统一监测信息,包括服务的调用情况及运行情况。帮助用户高效便捷的管理成果、利用成果及监测成果。
6 完善的断点缓存机制
TempoAI提供节点的断点缓存机制,包括开启缓存、关闭缓存、清除缓存、从缓存处执行、执行到当前节点、从下一个节点开始执行等功能,为用户在设计端调试建模流程提供了高效便捷的手段,显着提升用户的建模效率。
7 灵活的流程版本及模型版本管理机制
为了方便用户更好的对多次训练产生的挖掘流程和模型进行管理,平台提供了流程版本及模型版本管理功能,支持用户对流程的版本及模型的版本进行记录和回溯,满足用户对流程及模型的管理诉求,提升用户建模体验。
8 跨平台模型迁移及融合能力
TempoAI平台支持PMML文件的导入和导出功能,可以实现跨平台模型之间的迁移和融合,利于用户进行历史模型的迁移,实现用户在不同平台的模型成果快速共享,提升成果的复用性。
9 丰富的行业应用案例
TempoAI支持应用模板功能,针对不同行业的痛点内置了丰富的分析案例,“案例库”一方面为用户学习平台操作和挖掘分析过程提供指导,另一方面可以为用户提供直接或间接的行业分析解决方案。
10 流数据处理功能
TempoAI提供流数据处理功能,包括kafka输入(流)、kafka输出(流)、SQL编辑(流)、数据连接(流)、数据水印(流),满足用户对实时流数据进行处理的需求。
11 一键式建模能力
TempoAI支持一键式建模功能,用户只需输入数据,该功能可以自动完成数据处理、特征工程、算法及参数选择及模型评估等环节。节省了用户AI建模的时间,提升了建模效率。让用户将有限的精力更多的关注到业务中,将建模工作交给平台,从而进一步降低AI建模的门槛。
Ⅹ 互联网乌镇论剑马云一句话把大家吓坏了吗
一年一度,大咖来。
第四届世界互联网大会(12月3日-5日),今天正式启幕。
乌压压的一群摄影记者蹲点在安检处,等待抓拍互联网大佬;开大会时,大佬们的座位怎么排;今晚,快乐的丁老板(丁磊)又会带来自家的什么东西招待大家……里里外外,都透露着一股八卦味。
而在大会现场蹦跶了一整天的小梁哥,在朋友圈发了这样一句感慨:马云和其他两位(李彦宏、马化腾)的颜值差距在缩小,其他两位的口才和马云的差距在缩小。
雷军:小米不仅是手机公司,还是电商公司AI公司。
1. 发展数字经济的关键是创新和融合。将互联网20年发展的技术和方法论与各行各业融合。融合也是创新,让生活更加美好。
2. 发展数字经济创新很关键,技术驱动也很关键,AI也是重要驱动力。
3. 在数字经济上,我同意Pony的观点,融合发展是重要驱动因素。比如小米,大家觉得小米是智能手机公司,但我创办小米时就提出铁人三项。前些年我们的手机100%是小米网销售,如今,小米也是电商和AI公司。我们也是一个融合发展的公司,融合本身就是创新。我提出一个观点,融合是发展数字经济很关键的因素。
4. 不管是发展数字经济、还是AI,5G将是重要驱动力,这一潮流未来两三年就会开始。5G让带宽增大增长,对数字内容很有帮助,5G还带来了新的机会。现在的智能设备并没有真正的连起来,互联网更多是人与人的连接,5G要解决的核心问题是设备的连接。
5. AI并不是只有大公司才能实现。这是个开放的时代,每个公司都有机会。
6. 中国换机潮结束,带来了移动互联网普及。而印度智能机刚普及,会带来移动互联网,中国发生过的很多变化。我们今年进入了60个国家,不仅与国际厂商竞争,也与中国企业竞争,这促进了世界智能手机行业的进步。我们进入别的国家,也带过去了人才、技术和商业模式,现在还是个合作共赢的时代。