① 个性化推荐算法——协同过滤
电子商务推荐系统的一种主要算法。
协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。
与传统文本过滤相比,协同过滤有下列优点:
(1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐;
(2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;
(3)推荐的新颖性。
正因为如此,协同过滤在商业应用上也取得了不错的成绩。Amazon,CDNow,MovieFinder,都采用了协同过滤的技术来提高服务质量。
缺点是:
(1)用户对商品的评价非常稀疏,这样基于用户的评价所得到的用户间的相似性可能不准确(即稀疏性问题);
(2)随着用户和商品的增多,系统的性能会越来越低;
(3)如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐(即最初评价问题)。
因此,现在的电子商务推荐系统都采用了几种技术相结合的推荐技术。
案例: AMAZON 个性化推荐系统先驱 (基于协同过滤)
AMAZON是一个虚拟的网上书店,它没有自己的店面,而是在网上进行在线销售. 它提供了高质量的综合节目数据库和检索系统,用户可以在网上查询有关图书的信息.如果用户需要购买的化,可以把选择的书放在虚拟购书篮中,最后查看购书篮中的商品,选择合适的服务方式并且提交订单,这样读者所选购的书在几天后就可以送到家.
AMAZON书店还提供先进的个性化推荐功能,能为不同兴趣偏好的用户自动推荐符合其兴趣需要的书籍. AMAZON使用推荐软件对读者曾经购买过的书以及该读者对其他书的评价进行分析后,将向读者推荐他可能喜欢的新书,只要鼠标点一下,就可以买到该书了;AMAZON能对顾客购买过的东西进行自动分析,然后因人而异的提出合适的建议. 读者的信息将被再次保存.这样顾客下次来时就能更容易的买到想要的书. 此外,完善的售后服务也是AMAZON的优势,读者可以在拿到书籍的30天内,将完好无损的书和音乐光盘退回AMAZON, AMAZON将原价退款. 当然AMAZON的成功还不止于此, 如果一位顾客在AMAZON购买一本书,下次他再次访问时,映入眼帘的首先是这位顾客的名字和欢迎的字样.
② 推荐算法会产生哪些负面影响
长期刷网页的人会有一个感觉,每天花了大量的时间看头条新闻,结果偶尔打开电视,发现错过了很多重要有意义的新闻,说明算法推荐方式本身有缺陷,它并没有足够全面的掌控用户喜好,结果就是大家获取到的信息是片面的。
③ 推荐算法的主要推荐方法的对比
各种推荐方法都有其各自的优点和缺点,见表1。 表1 主要推荐方法对比 推荐方法优点缺点基于内容推荐推荐结果直观,容易解释;不需要领域知识 新用户问题;复杂属性不好处理;
要有足够数据构造分类器 协同过滤推荐新异兴趣发现、不需要领域知识;随着时间推移性能提高;
推荐个性化、自动化程度高;
能处理复杂的非结构化对象 稀疏问题;可扩展性问题;
新用户问题;
质量取决于历史数据集;
系统开始时推荐质量差; 基于规则推荐能发现新兴趣点;不要领域知识 规则抽取难、耗时;产品名同义性问题;
个性化程度低; 基于效用推荐无冷开始和稀疏问题;对用户偏好变化敏感;
能考虑非产品特性 用户必须输入效用函数;推荐是静态的,灵活性差;
属性重叠问题; 基于知识推荐能把用户需求映射到产品上;能考虑非产品属性 知识难获得;推荐是静态的
④ 简要智能阅读中智能推荐的技术原理
智能推荐算法总的来说分为两种:基于内容的推荐算法和协同过滤推荐算法。
基于内容的推荐算法:
根据内容的相似度(静态的东西)进行推荐,内容不好提取的可以采取贴标签的形式来区分计算内容的相似程度。然后根据用户的喜好设置,关注等进行相似内容推荐。
协同过滤推荐算法:
根据动态信息来进行推荐,即推荐的过程是自动的,推荐结果的产生是系统从用户的购买行为或浏览记录等隐式信息拿到的,无需用户通过填表格等方式来明确自己的喜好。因为这些数据都是要读到内存中进行运算的,所以又叫基于内存的协同过滤(Memory-based Collaborative Filtering),另一种协同过滤算法则是基于模型的协同过滤(Model-based Collaborative Filtering);m个物品,m个用户的数据,只有部分用户和部分数据之间是有评分数据的,其它部分评分是空白,此时我们要用已有的部分稀疏数据来预测那些空白的物品和数据之间的评分关系,找到最高评分的物品推荐给用户。对于这个问题,用机器学习的思想来建模解决,主流的方法可以分为:用关联算法,聚类算法,分类算法,回归算法,矩阵分解,神经网络,图模型以及隐语义模型来解决。
(https://www.cnblogs.com/chenliyang/p/6548306.html)
而基于内存的协同过滤又有两种:
基于user的协同过滤(用户相似度):通过相似用户的喜好来推荐
基于item的协同过滤(内容相似度):通过用户对项目的不同评分推荐可能让用户打高评分的项目,是项目之间的相似度。
任何一种单一推荐算法都有缺点,我们在实际项目中,可以采用混合推荐算法,融合以上方法,通过串联并联等融合,构造出自己的一套推荐体系。
⑤ 算法推荐利弊分析
横河或Fluke采用的平均算法,算的是两相的平均值,不能作为第三相的值。否则,将得到错误的结论。举例说,a、b、c三相,b接单相电的N端,a、c一起接L端。此时,应该有:Uab=Ucb;Uca=0;若采用平均法,就有Uca=Uab=Ucb。
⑥ 如何做好“推荐算法”有哪些常见的错误需要避免
在这里share一下。
1、推荐算法的构成
一套标准的推荐算法,需要四个组成部分
第一:数据源,行为基础数据的筛选;通常,推荐算法来源于用户行为的采集,简单说就是行为数据越丰富,样本覆盖率越全面,结果越准确;如果采样有偏差,那么结果就会有偏差。
举例1:游戏推荐算法,我们之前限于采样技术水平和处理能力,用的是登陆用户玩过的游戏历史,那么推荐结果就会偏重于需要登陆的游戏。而随着技术提升用全部用户玩过的游戏历史,就更全面了。
举例2:在搜索引擎中,对关键词做推荐,有两种方案,一种是基于广告主的竞价记录;另一种是基于网民的搜索行为;前一种专业性更强,噪音小;后一种覆盖面广,噪音大,各有利弊,根据业务诉求选择。
推荐算法,通常来源于用户的行为记录,比如关键词推荐用用户搜索历史,电商推荐用用户购物历史,游戏推荐用玩家玩游戏的历史,然后基于算法给出相关度,再排序展示 ;但这不绝对,也有并非基于用户行为记录的推荐原理,比如基于用户身份特征或其他地区、网络环境等特征,限于篇幅和常见的业务诉求,这里就不展开说明了。
行为基础数据必要时要做一些去除噪音的工作,比如你通过日志分析玩家游戏历史,或用户购物历史,至少知道把各搜索引擎和工具的抓取痕迹过滤出去,否则结果是很难看的。
算法很多种,网上可以搜到很多,就算搜不到,或者搜到了看不懂,自己编也不难的(我就编过,效果自以为还不错,但是的确不如人家专业的算法效果好,所以适合练手,不适合出去吹牛)
不同算法差异还是蛮大的,需要理解一下业务诉求和目标特征来选择。这个我真心不是高手,我们同事讲的算法我都没能理解,就不多说了。微博上的“张栋_机器学习"和"梁斌penny"都是算法高手,大家可以多关心他们的微博。
第三:参数!
绝对不要认为用到了好的算法就可以了!算法往往会基于一些参数来调优,这些参数哪里来?很不好意思的告诉你,大部分是拍脑袋出来的。但是你拍脑袋出来后,要知道去分析结果,去看哪里对,哪里错,哪里可以改,好的算法可以自动调优,机器学习,不断自动调整参数达到最优,但是通常可能需要你不断手工去看,去看badcase,想想是什么参数因素导致的,改一下是否变好?是否引入新的bad case?
第四:校验!
校验一种是人工做盲测,A算法,B算法的结果混淆,选案例集,看哪个效果好;或A参数、B参数混淆,同理测试。通过盲测选择认为更合理的算法、更适宜的参数.
以上是个人认为,做好推荐算法的步骤
下面说一下常见问题
1、以为有了算法就ok了,不对参数优化,不做后续的校验和数据跟踪,效果不好就说算法有问题,这种基本属于工作态度的问题了。
2、对样本数据的筛选有问题,或缺乏必要的噪音筛查,导致结果噪音多。比如你有个推广位天天摆着,导致用户点击多,然后导致后台行为数据里它和谁的关联都高,然后不管用户到哪里都推荐这个玩意,这就是没有足够筛查。
3、热度影响
我说一下最简单的推荐算法
同时选择了A和B的人数作为A与B的关联度。
这个实现最简单,也最容易理解,但是很容易受热度影响
我曾经注意过某个热门图书电商网站,推荐的关联书籍一水的热门书籍,就是这个问题。
这些是非常简单但是又非常容易出现的,关联误区。
4、过于求全
现在也遇到一些朋友,一提到推荐算法或者推荐系统,就说我这个要考虑,那个要考虑,不管是行为记录,还是用户特征,以至于各种节日效应,等等等等,想通过一个推荐系统完全搞定,目标很大,所以动作就极慢,构思洋洋洒洒做了很多,实现起来无从下手,或者难以寸进;我觉得,还是量力而行,从最容易下手的地方开始,先做到比没有强,然后根据不断地数据校验跟踪,逐渐加入其他考虑因素,步步前进,而不要一上来就定一个宏伟的庞大的目标;此外要考虑实现成本和开发周期,对于大部分技术实力没有网络,腾讯,淘宝那么强的公司而言,先把简单的东西搞好,已经足够有效了,然后在运营数据的基础上逐次推进,会越来越好;有些公司是被自己宏大的目标搞的焦头烂额,最后说,哎,没牛人搞不定啊。嗯,反正他们的目标,我显着是搞不定的。就这些,希望有所帮助
⑦ 3分钟轻松了解个性化推荐算法
推荐这种体验除了电商网站,还有新闻推荐、电台音乐推荐、搜索相关内容及广告推荐,基于数据的个性化推荐也越来越普遍了。今天就针对场景来说说这些不同的个性化推荐算法吧。
说个性化之前,先提一下非个性化。 非个性化的推荐也是很常见的,毕竟人嘛都有从众心理,总想知道大家都在看什么。非个性化推荐的方式主要就是以比较单一的维度加上半衰期去看全局排名,比如,30天内点击排名,一周热门排名。
但是只靠非个性化推荐有个弊端,就是马太效应,点的人越多的,经过推荐点得人有更多。。。强者越强,弱者机会越少就越弱,可能导致两级分化严重,一些比较优质素材就被埋没了。
所以,为了解决一部分马太效应的问题,也主要是顺应数据化和自动化的模式,就需要增加个性化的推荐(可算说到正题了。。。)个性化的优点是不仅体验好,而且也大大增加了效率,让你更快找到你感兴趣的东西。YouTube也曾做过实验测试个性化和非个性化的效果,最终结果显示个性化推荐的点击率是同期热门视频的两倍。
1.新闻、视频、资讯和电台(基于内容推荐)
一般来说,如果是推荐资讯类的都会采用基于内容的推荐,甚至早期的邮件过滤也采用这种方式。
基于内容的推荐方法就是根据用户过去的行为记录来向用户推荐相似额推荐品。简单来说就是你常常浏览科技新闻,那就更多的给你推荐科技类的新闻。
复杂来说,根据行为设计权重,根据不同维度属性区分推荐品都是麻烦的事,常用的判断用户可能会喜欢推荐品程度的余弦向量公式长这样,我就不解释了(已经勾起了我关于高数不好的回忆)。。。
但是,这种算法缺点是由于内容高度匹配,导致推荐结果的惊喜度较差,而且有冷启动的问题,对新用户不能提供可靠的推荐结果。并且,只有维度增加才能增加推荐的精度,但是维度一旦增加计算量也成指数型增长。如果是非实体的推荐品,定义风格也不是一件容易的事,同一个作者的文风和曲风也会发生改变。
2.电商零售类(协同过滤推荐和关联规则推荐)
说电商推荐那不可能不讲到亚马逊,传言亚马逊有三成的销售额都来自个性化的商品推荐系统。实际上,我自己也常常在这里找到喜欢的书,也愿意主动的去看他到底给我推荐了什么。
一般,电商主流推荐算法是基于一个这样的假设,“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”即协同过滤过滤算法。主要的任务就是找出和你品味最相近的用户,从而根据最近他的喜好预测你也可能喜欢什么。
这种方法可以推荐一些内容上差异较大但是又是用户感兴趣的物品,很好的支持用户发现潜在的兴趣偏好。也不需要领域知识,并且随着时间推移性能提高。但是也存在无法向新用户推荐的问题,系统刚刚开始时推荐质可能较量差。
电商行业也常常会使用到基于关联规则的推荐。即以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。比如,你购买了羽毛球拍,那我相应的会向你推荐羽毛球周边用品。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零售业中已经得到了成功的应用。
3.广告行业(基于知识推荐)
自从可以浏览器读取cookies,甚至获得年龄属性等信息,广告的个性化投放就也可以根据不同场景使用了。
当用户的行为数据较少时,基于知识的推荐可以帮助我们解决这类问题。用户必须指定需求,然后系统设法给出解决方式。假设,你的广告需要指定某地区某年龄段的投放,系统就根据这条规则进行计算。基于知识的推荐在某种程度是可以看成是一种推理技术。这种方法不需要用户行为数据就能推荐,所以不存在冷启动问题。推荐结果主要依赖两种形式,基于约束推荐和基于实例推荐。
4.组合推荐
由于各种推荐方法都有优缺点,所以在实际中,并不像上文讲的那样采用单一的方法进行建模和推荐(我真的只是为了解释清楚算法)。。。
在组合方式上,也有多种思路:加权、变换、混合、特征组合、层叠、特征扩充、元级别。 并且,为了解决冷启动的问题,还会相应的增加补足策略,比如根据用户模型的数据,结合挖掘的各种榜单进行补足,如全局热门、分类热门等。 还有一些开放性的问题,比如,需不需要帮助用户有品味的提升,引导人去更好的生活。
最后,我总想,最好的推荐效果是像一个了解你的朋友一样跟你推荐,因为他知道你喜欢什么,最近对什么感兴趣,也总能发现一些有趣的新东西。这让我想到有一些朋友总会兴致勃勃的过来说,嘿,给你推荐个东西,你肯定喜欢,光是听到这句话我好像就开心起来,也许这就是我喜欢这个功能的原因。
⑧ 遗传算法的优缺点
优点:
1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。
另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。
2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。
3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。
另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。
4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。
5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。
缺点:
1、遗传算法在进行编码时容易出现不规范不准确的问题。
2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。
3、遗传算法效率通常低于其他传统的优化方法。
4、遗传算法容易出现过早收敛的问题。
(8)传统推荐算法缺点扩展阅读
遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。
函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。
为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。
⑨ 传统媒体的挑战和缺陷有哪些
传统媒体的挑战如下:
1、常用的新闻智能推荐算法,是根据用户个人的历史阅读喜好在内容资源池中进行关键词分析匹配,实现个性化推荐,未被算法匹配的内容因与用户历史喜好相似度不高而不会被算法推荐,长此以往受众的阅读视野便会受到限制。
2、以算法为主导的新闻聚合形式,会让点击率高的信息得到更多的推荐,使得一些舆论冲突、虚假新闻、流言与谣言被算法推荐,造成广泛传播,与主流信息相悖。
3、各方的观点和多元的思想会被算法淹没,降低了多元化与公共性新闻的传播效能,新闻的公共性面临着被消解的危险,主流媒体对普通受众甚至弱势群体应有的价值关怀也会被削弱。
传统媒体的缺陷
1、内容形式创新性不足。这尤其体现在短视频新闻事件报道中,浏览新闻客户端及抖音中的短视频新闻发现,部分视频是电视新闻的压缩版,对在传统渠道上发布过的新闻内容进行重点画面截取,添加字幕和音效后向受众推送,简单搬运过来的新闻信息缺乏新意。
2、新闻叙事过于宏大。部分主流媒体进行重大主题报道时存在过度强调宏大叙事,新闻组织策划模板化、僵硬化等不足。在传统媒体新闻传播中,受众作为被动的信息接收者,除了看与不看两种选择外,既不能参与到新闻信息内容生产中,也不能控制信息流向。
3、内容生产缺乏用户思维。传统新闻传播方式和新形势下用户接收新闻的习惯契合度不高,仍然采用以媒体为中心生产新闻的传统方式,用户需求如若长期得不到满足,势必会引起传播力的下降。
4、信息发布缺乏差异化。部分传统媒体仍然沿用将同样的内容在不同的媒介上同时发布的习惯,并没有将传统分发方式与互联网中各个新媒体平台的差异化形式、内容及传播特点相结合。
⑩ 改进模拟退火算法与传统模拟退火算法相比优缺点是什么,如有缺点该如何改进
1、模拟退火算法是一种新的随机搜索方法,它是近年来提出的一种适合于解决大规模组合优化问题的通用而有效的近似算法。与以往的近似算法相比,模拟退火算法具有描述简单、使用灵活、运用广泛、运行效率高和较少受到初始条件约束等优点。
2、模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。