导航:首页 > 源码编译 > 大数字相加的速算法

大数字相加的速算法

发布时间:2022-05-21 10:35:21

‘壹’ 快心算加法口诀是什么

加法速算

1、 不进位的加法算式:(一定要先看清楚进不进位)

A :两位数加一位数:先写上十位数,再接着写上个位数的和。

B 两位数加两位数:先写十位数的和,再写个位数的和

C 多位数加多位数:从高位起,依次写上相同位上的数的和

2、进位加法算式(一定要观察是否进位)

加法速算技巧进位加法的关键是向高一位进1,进1既然已经是一定的事情,可不可以先进1呢?观察好后可以从高位先算起。

A 两位数加一位数:先写上十位数加1的和,再接着写个位数的和的个位数(用二十以内加法口诀)

B 两位数加一位数:先写上两位数凑成整十后的十位数,再写上一位数分出一个数后剩余的数。(即把一位数分开,帮两 位数凑十)

加法速算技巧 15+8= 过程:15+5=20 先写2,8分出5后剩余3,再接着写3。

(1)大数字相加的速算法扩展阅读

快心算模式

1、会算法——笔算训练,现今我国的教育体制是应试教育,检验学生的标准是考试成绩单,那么学生的主要任务就是应试,答题,答题要用笔写,笔算训练是教学的主线。

与小学数学计算方法一致,不运用任何实物计算,无论横式,竖式,连加连减都可运用自如,用笔做计算是启动智慧快车的一把金钥匙。

2、明算理—算理拼玩。会用笔写题,不但要使孩子会算法,还要让孩子明白算理。 使孩子在拼玩中理解计算的算理,突破数的计算。孩子是在理解的基础上完成的计算。

3、练速度——速度训练,会用笔算题还远远不够,小学的口算要有时间限定,是否达标要用时间说话,也就是会算题还不够,主要还是要提速。

4、启智慧——智力体操,不单纯地学习计算,着重培养孩子的数学思维能力,全面激发左右脑潜能,开发全脑。

经过快心算的训练,学前孩子可以深刻的理解数学的本质(包含),数的意义(基数,序数,和包含),数的运算机理(同数位的数的加减,)数学逻辑运算的方式,使孩子掌握处理复杂信息分解方法,发散思维,逆向思维得到了发展。孩子得到一个反应敏锐的大脑。

‘贰’ 速算法则

1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=1 2+4=6 2×4=8 12×14=168 注:个位相乘,不够两位数要用0占位。

2、头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=21 23×27=621 注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=4 4×4=16 7×4=28 37×44=1628 注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=8 2+4=6 1×1=1 21×41=861

5、11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾 11×23125=254375 注:和满十要进一。

6、十几乘任意数: 口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=?解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。

(2)大数字相加的速算法扩展阅读:

之所以选用72,是因为它有较多因数,容易被整除,更方便计算。它的因数有1、2、3、4、6、8、9、12和它本身。

一般息率或年期的复利

使用72作为分子足够计算一般息率(由6至10%),但对于较高的息率,准确度会降低。

低息率或逐日复利

对于低息率或逐日复利,69.3会提供较准确的结果(因为ln2约等于69.3%,参见下面“原理”)。对于少过6%的计算,使用69.3也会较为准确。

对于高息率,较大的分子会较理想,如若要计算20%,以76除之得3.8,与实际数值相差0.002,但以72除之得3.6,与实际值相差0.2。若息率大过10%,使用72的误差介乎2.4%至−14.0%。

较大利息率

若计算涉及较大利息率(r),以作以下调整:

t = [72+(r-8)/3] ÷ r (近似值)

逐日复息

若计算逐日复息,则可作以下调整:

t = (69.3+r/3) ÷ r

定期复利

定期复利的将来值(FV)为:

FV = PV * (1+r)^t

其中PV为现在值、t为期数、r为每一期的利率。

当该笔投资倍增,则FV = 2PV。代入上式后,可简化为:

2 = (1+r)^t

解方程得,t = ln2 ÷ ln(1+r)

若r数值较小,则ln(1+r)约等于r(这是泰勒级数的第一项);加上ln2 ≈ 0.693147,于是:

t ≈ 0.693147 ÷ r

投资72法则

其实所谓的“72法则”就是以1%的复利来计息,经过72年以后,本金会变成原来的一倍。这个公式好用的地方在于它能以一推十,例如:利用8%年报酬率的投资工具,经过9年(72/8)本金就变成一倍;利用12%的投资工具,则要6年左右(72/12),就能让1元钱变成2元钱。

‘叁’ 一分钟速算法,多一点方法。

一分钟速算法口诀

第1节 个位数比十位数大1乘以9的运算

方法:前面因数的个位数是几,就把第几个手指弯回来,弯指左边有几个手指,则表示乘积的百位数是几。弯指读0,则表示乘积的十位数是0,弯指右边有几个手指,则表示乘积的个位数是几。

口诀:个位是几弯回几,弯指左边是百位,弯指读0为十位,弯指右边是个位。

例:34×9=306

第2节 个位数比十位数大任意数乘以9的运算

方法:凡是个位数比十位数大任意数乘以9时,仍是前面因数的个位数是几,将第几个手指弯回来,弯回来的手指不读数,作为乘积的十位数与个位数的分界线。前面因数的十位数是几,从左边起数过几个手指,则表示乘积的百位数就是几,弯指左边减去百位数,还剩几个手指,则表示乘积的十位数是几,弯指的右边有几个手指,则表示乘积的个位数是几。

口诀:个位是几弯回几,原十位数为百位。左边减去百位数,剩余手指为十位。弯指作为分界线,弯指右边是个位。

例:13×9=117

第3节 个位数和十位数相同乘以9

方法:凡是个位数和十位数相同乘以9时,它的个位数是几则将第几个手指弯回来。弯指左边有几个手指则表示乘积的百位数是几。弯回来的手指读9,作为乘积的十位数。弯指右边有几个手指,则表示乘积的个位数是几。

口诀:个位是几就弯几,弯指左边是百位。弯指读9是十位,弯指右边是个位。

例:88×9=792

第4节 个位数比十位数小乘积9的运算

方法:计算时只要将前面因数的十位数减1写在百位上,前面因数的个位数是几,写在乘积的十位上,前面因数于与100的差数,写在乘积的个位即可。

如果是80几乘以9,因80几与100差10几,则在乘积的十位数上加1.如果是70几乘以9,因70几与100差20几,则应在乘积的十位上加2。其他依次类推。

口诀:十位减1写百位,原个位数写十位。与百差几写个位,如差几十加十位。

例:94×9=846 62×9=558

第二章 加法第1节 加大减差法

方法:在一个加式里,如果被加数或加数有一个接近整十、整百、整千等,都以整数来加,然后再减去这个差数(即补数),这样计算起来十分方便。

口诀:用第一个加数加上第二个加数的整十、整百、整千……再减去第二个加数与整十、整百、整千……的差,等于和。

第2节 求只是两个数字位置变换两位数的和

方法:在一个两位数的加式里,如果被加数的十位数和加数的个位数相同,而被加数的个位数又和加数的十位数相同,就将被加数的十位数和个位数相加之和再乘以11,即为这个加式的和。

口诀:(首+尾)×11=和

例:58+85=(5+8)×11=143

第3节 一目三行加法

方法:若三行数在一起相加,未加之前先虚进1,把第一位和末尾第二位之间的数看作中间数,凑9弃掉,剩几写几,末尾一位数凑10弃掉,剩几写几,即为所求三行之和。

口诀:提前虚进1,中间弃9,末尾弃10。

注意三个重点:

相加不够9的用分段法:直接相加,并要提前虚进1;

中间数相加大于19的(弃19),前面多进1;

末位数相加大于20的(弃20),前边多进1.

第三章 减法第1节 减大加差法

方法:在一个减式里,如果被减数的后几位数值较小,而减数的后几位数值较大,往往要向前借好几位时,则应将减数中加上一个数(即补数)变成整数,从被减数中减去,然后再加上这个补数,即得最终差数。

口诀:用被减数减去减数的整十、整百、整千……再加上减数与整十、整百、整千……的差,等于差。

第2节 求只是数字位置颠倒两个两位数的差

方法:在一个两位数的减式里,如果被减数的十位数值与减数的个位数值相同,而被减数的个位数值又与减数的十位数值相同时,用被减数的十位数值,减去被减数的个位数值,再乘以9等于差。

口诀:用被减数的十位数减去它的个位数,再乘以9,等于差。

例:74-47=(7-4)×9=27

第3节 求只是首尾换位,中间数相同的两个三位数的差

方法:被减数的百位数减去个位数的差乘以9,分别将乘积的十位数值作为百位数,将乘积的个位数值仍作为个位数,两数中间写上一个9(即十位),便是这个减式的差。

口诀:用被减数的百位数减去它的个位数,再乘以9,得到一个两位数,再在这个数中间写上9,就等于这两个数的差。

例:936-639=(9-6)×9=3×9=27=2(9)7

第4节 求两个互补数的差

如何求一个数的补数?从十位数起向左边,无论有多少位数,都给它凑成9,个位数(即末尾一个数)凑成10即可,这就是它的补数。

互补的概念:两数相加(和)等于整10、整100、整1000……叫互补。

求补数的方法:前凑9,后凑10。

口诀:两位互补的数相减:减50后,再乘以2等于差;

三位互补的数相减:减500后,再乘以2等于差;

四位互补的数相减:减5000后,再乘以2等于差;

……依此类推。

第四章 乘法第1节 十位数相同,个位数互补的乘法运算

方法:在一个两位数的乘式里,凡是十位数相同,个位数互补时,在前面因数的十位数上加上一个1,再和另一个因数的十位数相乘,所得的积写在乘积的前两位。然后个位和个位相乘的积,写在后两位,即为乘式的最终积。

口诀:前面数十位加个1,和另一个数十位乘得积,后写两个个位积,即为所求最终积。

例:67×63=6×(6+1)……7×3=42……21=4221

第2节 十位数互补,个位数相同的乘法运算

方法:在一个两位数的乘式里,如果前面因数和后面因数的十位数互补,它们的个位数相同时计算方法:首先十位数与十位数相乘的积再加上个位数写前边,后写它们两个数个位相乘之积,即为所求最终积。

口诀:十位相乘加个位,个位相乘写后边。十位数没有要添个0(例2)。

例1:76×36=(7×3+6)……6×6=27……36+2736

例2:83×23=(8×2+3)……3×3=19……(0)9=1909

第3节 一个数十位与个位互补,另一个数相同的乘法运算

方法:在互补的十位数上加个1,和另一数十位乘得积,后面写上两个数个位相乘的积,即为所求的最终积。

注意:

(1)补数在上面还是在下面,必须在互补数十位加个1,上下相乘,即可。

(2)对于多位数都相同的数,中间有几个数(除首尾两个),直接写在积得中间即可。

口诀:互补数十位加个1,和另一数十位乘得积,后续两个个位积,即为所求最终积。

第4节 11的乘法运算

方法:凡任何一个数乘以11时,最高位是几,就向前位进几。最高位数和第二位数相加写在第二位,第二位数和第三位数相加写在第三位。相加超10前面加1,个位是几还写几,依此类推,就是11的乘积。

口诀:高位是几则进几,两两相加挨次写。相加超十前加1,个位是几还是几。

例1:76×11=836
例2:86×11=946

第5节 十位数是1的乘法运算

方法:在一个两位数的乘式里,如果两个数十位都是1,个位是任意数,可将个位与个位相乘,得数写后面;个位与个位相加之和写中间;十位与十位相乘得积,写前边(有进位的加进位),即为这个乘式之积。

口诀:个位相乘写个位,个位相加写十位,有进位的加进位。十位相乘写百位,有进位的加进位。

例:18×16=288

第6节 个位数是1的乘法运算

方法:在一个两位数的乘式里,如果两个数的个位数都是1,而且十位数是任意数时,可按三步计算:(1)将个位数相乘写个位,(2)十位数相加写十位,(3)十位数相乘写百位(有进位的加进位)。即为乘式的最终积。

口诀:个位相乘写个位,十位相加写十位,十位相乘写高位(有进位的加进位)。

例:91×81=7371

第7节 特殊数的乘法运算

方法:在一个乘式里,前面的因数缩小几倍,后面的因数就扩大几倍,其积不变。

口诀:任何数乘以15、35或45,就把这个任何数缩小2倍,再把15、35或45扩大2倍,其积不变。

任何数乘以25,就把这个任何数缩小4倍,再把25扩大4倍,其积不变。

任何数乘以125,就把这个任何数缩小8倍,再把125扩大8倍,其积不变。

例:78×45=(78÷2)×(45×2)=39×90=3510

第8节 任意两位数乘以两位数的万能法

方法:任意两位数乘以两位数可分三步完成

(1)首先个位数上下相乘

(2)个位数和十位数交叉相乘相加(有进位的加进位)

(3)十位数上下相乘(有进位的加进位)

口诀:个位数上下相乘;个位数和十位数交叉相乘积相加(有进位的加进位);十位数上下相乘(有进位的加进位)。

例:78×45


第9节 任意三位数乘以两位数的万能法

方法:(1)个位数上下相乘

(2)个位数和十位数交叉相乘积相加(有进位的加进位)

(3)后面因数的个位数和前面因数的百位数交叉相乘再加上十位数上下相乘(有进位的加进位)

(4)后面因数的十位数和前面因数的百位数交叉相乘(有进位的加进位)。

口诀:个位数上下相乘;

个位数和十位数交叉相乘积相加(有进位的加进位);

个位数和百位数交叉相乘再加上十位数上下相乘(有进位的加进位);

十位数和百位数交叉相乘(有进位的加进位)。

第10节 任意三位数乘以三位数的万能法

方法和口诀相同:

(1)个位数上下相乘;

(2)个位数和十位数交叉相乘积相加(有进位的加进位);

(3)个位数和百位数交叉相乘加上十位数上下相乘(有进位的加进位);

(4)十位数和百位数交叉相乘积相加(有进位的加进位);

(5)百位数上下相乘(有进位的加进位)。

第11节 数值越大越好算

999的平方

方法:只要是同位数9自乘,无论是多少位,只将9的位数减1位剩几个9写几个9,后面写一个8,前面有几个9,后面就写几个0,末位只写一个1,即为乘式最终积。如三个9自乘时,需写两个9,一个8,两个0,一个1.而六位9自乘时,需写五个9,一个8,五个0,一个1。

口诀:先求两数各补数;交叉相减减补数(减一次)写前边;补数相乘写后边。

第12节 数值小了也好算

口诀:百位数乘以百位数写高位;

百位数和个位数相乘的积,扩大两倍写中间;

个位数乘个位写后面;

大于100要进位。第五章 一位数乘任意多位数第1节 2的乘法运算

方法:凡2乘以5以下的数字,应直接写出它的倍数来,遇到大于4的数字如5、6、7、8、9等,都要在前一位上加一个1.在算前一位(即高位)时,必须要看后位(即低位)是否大于5,决定有无进位,大者在前位上加1.

因为2×5=10(个位数是0) 2×6=12(个位数是2) 2×7=14(个位数是4)

2×8=16(个位数是6) 2×9=18(个位数是8)

口诀:1、2、3、4只写倍,后数大5或等于5前加1。5个为0、6个为2、7个为4、8个为6、9个为8要记牢,算前看后莫忘掉。

第2节 3的乘法运算

方法:3的进位律是3的循环小数,无论3后面有几个3,但最后只要出现4或比4大的数,则前边就要进1,无论3循环到几个位数,最后是比3小的数字,都按不进位计算。

67也是一样,大于6的循环小数就进2,即6以后无论循环几位,只要后位有7或比7大的数就进2,6的循环小数是6或小于6以下都按不进2计算,但不进2必能进1。

数字上点圆点的,表示该数是循环小数,而后位数则表示无论前数循环几位,而见到后数即按大者计算,无论循环到几位不见后数,都按小于此数计算。

口诀:1、2、3数直写倍,后大34前加1,大于67要进2,循环小数要记准:4个为2;5个为5;6个为8;7个为1;8个为4;9个为7.算前看后莫忘记。

(3的乘法运算) (4的乘法运算)

第3节 4的乘法运算

方法:凡是用4乘1和2时,应直接写出它的倍数。4的进位律是大25进1,大50进2,大75进3。但必须记住:任何偶数乘以4时,其本个位都是它的补数。如见4是6;见6是4;见2是8;见8是2。而任何奇数乘以4时,其本个位都是它的凑数。如:1+4=5;3+2=5;5+0=5;7+8=15(个位是5);9+6=15(个位是5)。

口诀:1数2数直写倍,后大25前加1,大于5数要进2,后大75将3进,偶数个位皆互补,奇数个位凑5齐。

第4节 5的乘法运算

方法:根据乘法的性质原理:前面因数缩小几倍,后面因数扩大几倍,其积不变。凡是任何数乘以5时,先将前面因数缩小两倍,再乘后面因数5,扩大两倍变成10计算起来,就更简便了。

口诀:任何数乘以5,等于它的半数加零。

例:368×5=(368÷2)×(5×2)=184×10=1840第5节 6的乘法运算

方法:因为6是3的两倍,那么3的进位律是大34进1,大67进2。而6的进位律却是大34进2,大67进4。

口诀:167数要进1;后大34将2进;大5一定要进3;后大67将4进;834数要进5;循环小数要记准。

(6的乘法运算) (7的乘法运算)

第6节 7的乘法运算

方法:7的进律较难记,必须从中找窍门。7的进位律是:

大于进1;大于进2;

大于进3;大于进5;大于进6。

口诀:1428续57。进2、14搬后位。进3,将头按在尾。进4,57移前位。进5,将尾接在首。进6,分半前后移。偶数本个皆2倍,1-7;3-1;5本身;7-9;9-3要记牢,两位三位先相比。

第7节 8的乘法运算

方法:4的两倍,那么4的进位律是大25进1;大50进2;大75进3;而8的进位律是大25进2;大5进4;大75进6。本身加5本个同的意思是:个位数相同。如:

1+5=6(1和6个位相同是8) 2+5=7(2和7个位相同是6)

3+5=8(3和8个位相同是4) 4+5=9(4和9个位相同是2) 5+5=10(5的个位是0)

口诀:125数要进1,后大25将2进。375数要进3,后数大5将4进。625数应进5,后大75将6进。875数要进7,本身加5本个同。1、6个8;2、7-6;3、8个4;4、9-2。

第8节 9的乘法运算

方法:9乘任何数时,要看两位数,才能决定是进几,前位数值小于后位数值时,前位的数值是几则进几(照数进)。如果前位数值大于后位数时,无论是大几,在前位上只减一个1,余数即是应进的数,即称为前大于后要减1。

口诀:前小于后照数进,前大于后要减1。各数本个皆互补,算到末尾必减1。


乘法口诀速算方法:

两位数相乘,在十位数相同、个位数相加等于10的情况下,如62×68=4216

计算方法:6×(6+1)=42(前积),2×8=16(后积)。

一分钟速算口诀中对特殊题的定理是:

任意两位数乘以任意两位数,只要魏式系数为“0”所得的积,一定是两项数中的尾乘尾所得的积为后积,头乘头(其中一项头加1的和)的积为前积,两积相邻所得的积。

如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)

计算方法:3×(4+1)=15(前积),3×6=18(后积)

两积组成1518

如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)

计算方法:4×(8+1)=36(前积),3×4=12(后积)

两积相邻组成:3612

如(3)48×26=1248

计算方法:4×(2+1)=12(前积),6×8=48(后积)

两积组成:1248

如(4)245平方=

计算方法24×(24+1)=600(前积),5×5=25

两积组成:

ab×cd 魏式系数=(a-c)×d+(b+d-10)×c

“头乘头,尾乘尾,合零为整,补余数。”

1.先求出魏式系数

2.头乘头(其中一项加一)为前积 (适应尾相加为10的数)

3.尾乘尾为后积。

4.两积相连,在十位数上加上魏式系数即可 。

如:76×75,87×84吧,凡是十位数相同个位数相加为11的数,它的魏式系数一定是它的十位数的数 。

如:76×75魏式系数就是7,87×84魏式系数就是8。

如:78×63,59×42,它们的系数一定是十位数大的数减去它的个位数。

例如第一题魏式系数等于7-8=-1,第2题魏式系数等于5-9=-4,只要十位数差一,个位数相加为11的数一律可以采用以上方法速算。

例题1 76×75, 计算方法: (7+1)×7=56 5×6=30 两积组成5630,然后十位数上加上7最后的积为5700。

例题2 78×63,计算方法:7×(6+1)=49,3×8=24,两积组成4924,然后在十位数上2减去1,最后的积为4914

实例:

-如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)-

-计算方法:3×(4+1)=15(前积),3×6=18(后积)-

-两积组成1518-

-如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)-

-计算方法:4×(8+1)=36(前积),3×4=12(后积)-

-两积相邻组成:3612-

-如(3)48×26=1248-

-计算方法:4×(2+1)=12(前积),6×8=48(后积)-

-两积组成:1248-

-如(4)245平方=-

-计算方法24×(24+1)=600(前积),5×5=25-

-两积组成:-

(一)十几与十几相乘

十几乘十几,

方法最容易,

保留十位加个位,

添零再加个位积。

证明:设m、n 为1 至9 的任意整数,则

(10+m)(10+n)

=100+10m+10n+mn

=10〔10+(m+n)〕+mn。

例:17×l6

∵10+ (7+6)=23(第三句),

∴230+7×6=230+42=272(第四句),

∴17×16=272。

(二)十位数字相同、个位数字互补(和为10)的两位数相乘

十位同,个位补,

两数相乘要记住:

十位加一乘十位,

个位之积紧相随。

证明:设m、n 为1 到9 的任意整数,则

(10m+n)〔10m+(10-n)〕

=100m(m+1)+n(10-n)。

例:34×36

∵(3+1)×3=4×3=12(第三句),

个位之积4×6=24,

∴34×36=1224。 (第四句)

注意:两个数之积小于10 时,十位数字应写零。

(三)用11 去乘其它任意两位数

两位数乘十一,

此数两边去,

中间留个空,

用和补进去。

证明:设m、n 为1 至9 的任意整数,则

(10m+n)×(10+1)=100m+10(m+n)+n。

例:36×ll

∵306+90=396,

∴36×11=396。

注意:当两位数字之和大于10 时,要进到百位上,那么百位数数字就成为m+1,

如:

84×11

∵804+12×10=804+120=924,

∴84×11=924。

‘肆’ 求加法心算速算口诀或技巧

加法速算技巧


1、 不进位的加法算式:(一定要先看清楚进不进位)


加法速算技巧


A :两位数加一位数:先写上十位数,再接着写上个位数的和。


B 两位数加两位数:先写十位数的和,再写个位数的和

C 多位数加多位数:从高位起,依次写上相同位上的数的和


2、进位加法算式(一定要观察是否进位)


加法速算技巧进位加法的关键是向高一位进1,进1既然已经是一定的事情,可不可以先进1呢?观察好后可以从高位先算起。


A 两位数加一位数:先写上十位数加1的和,再接着写个位数的和的个位数(用二十以内加法口诀)


B 两位数加一位数:先写上两位数凑成整十后的十位数,再写上一位数分出一个数后剩余的数。(即把一位数分开,帮两 位数凑十)


加法速算技巧 15+8= 过程:15+5=20 先写2,8分出5后剩余3,再接着写3。

(4)大数字相加的速算法扩展阅读:

加法是完全一致的事物也就是同类事物的重复或累计,是数字运算的开始,不同类比如一个苹果+一个橘子其结果只能等于二个水果就存在分类与归类的关系。

减法是加法的逆运算;乘法是加法的特殊形式;除法是乘法的逆运算;乘方是乘法的简便形式;开方是乘方的逆运算;对数是在乘方的各项中寻找规律;由对数而发展出导数;然后是微分和积分。数字运算的发展,是更特殊的情况,更高度重复下的规律。

有许多二进制操作可以被视为对实数的加法运算的概括。 抽象代数领域集中关注这种广义的运算,它们也出现在集合理论和类别理论中。

抽象代数中的加法

矢量加法:

在线性代数中,向量空间是一个代数结构,允许添加任何两个向量和缩放向量。 一个熟悉的向量空间是所有有序的实数对的集合;有序对(a,b)被解释为从欧几里德平面中的原点到平面中的点(a,b)的向量。 通过添加它们各自的坐标来获得两个向量的和:

集合理论和类别理论中的加法

增加自然数的方法是在集合理论中添加序数和基数。这些给出了两个不同的概括,即自然数。与大多数加法操作不同,序数的加法是不可交换的。 然而,增加基数是与不相交联合操作密切相关的交换操作。

在类别理论中,不相交加法被视为特殊情况,一般可能是所有加法概括中最为抽象的。 如直接总和和楔子总和,被命名为添加的联系。

‘伍’ 加减巧算速算方法

1加法交换律与加法结合律
加法交换律:
两个数相加,交换加数的位置,它们的和不变。即a+b=b+a
一般地,多个数相加,任意改变相加的次序,其和不变。
a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c = (a+b)+c = a+(b+c),
2速算与巧算中常用的三大基本思想
1.凑整 (目标:整十 整百 整千...)
2.分拆(分拆后能够凑成 整十 整百 整千...)
3.组合(合理分组再组合 )
3常见方法
凑整法
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。
对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…
下面讲利用"补数"巧算加法,通常称为"凑整法"。
巧算下面各题:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
组合凑整法
(1)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”
(2)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
(3)利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
基准法
在减法运算过程中利用补数原理,先将几个减数凑整,再进行减法运算。在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
计算 78+76+83+82+77+80+79+85=640

‘陆’ 数学速算方法有哪些

一、充分利用五大定律

教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。

二、巧妙运用首同末合十

利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54x56=3024,81x89=7209。

三、留心左右两数合并法

任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。

1、任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62x99=6138,48x99=4752。

2、任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781x999=780219,396x999=395604。

四、利用分数与除法的关系来巧算

在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,

24/18x36/12=(24/18)x(36/12)=24/18x36/12=4。

五、利用扩大缩小的规律进行简算

有些除法计算题直接计算比较繁琐,而且容易算错,利用扩缩规律进行合理的变形可以找到简便的解决方法。比如,

7/25=(7x4)/(25x4)=28/100=0.28,

24/125=(24x8)/(125x8)=192/1000=0.192。

‘柒’ 100以内加法速算技巧

速算口诀基础
100以内加法基本可以视为1-2次加法的合并,一次个位加法,一次是十位的加法,我们这里就以其中之一来讲一讲速算口诀,尤其是出现进位情况的速算口诀。
9+1,进位+1末位减9;9+2,进位+1末位减8;9+3,进位+1末位减7;
9+4,进位+1末位减6;9+5,进位+1末位减5;9+6,进位+1末位减4;
9+7,进位+1末位减3;9+8,进位+1末位减2;9+9,进位+1末位减1;
我们对这个口诀进行一个简单的讲解。例如:19+37,在个位上就是9+7,那么就在十位上+1(十位上变为1+3+1=5),个位上-3(9-3=6),最终得到计算结果56。
也许有的同学会问了,要是末位上没有数字9怎么办?其实道理是类似的。例如:17+37,在个位上是7+7,那么同样需要十位上+1(十位上为1+3+1=5),而这次个位上-3之后得到7-3=4,也就是最终结果是54。同学们不妨验算一下。
速算口诀拓展
口诀固然方便,但也需要各位同学能够在实战过程中记得住。而要记住口诀,我们更需要知道口诀的原理,才能更好的理解。
我们这里依然以17+37这个例子加以说明,我们首先对这个式子进行拆解:
17+37=17+(30+7)=17+(30+10-3)=17+40-3=50+(7-3)=54
可以发现这个口诀实际上是一种拆解的方法,将第二个加数拆解为个位部分和十位部分,再讲各位部分拆解为10和另一个数的差。然后再重新组合得到最终的结果。
各位同学不妨动手找几道题做一做,练一练。

‘捌’ 手指速算加法怎么进位

手指速算加法进位方法:
1、先确定双手分工:左手代表十位数,右手代表个位数。口诀为:我有一双手,代表九十九;左手定十位,九十我会数;
右手定个位,从一数到九。
2、再确定手指分工:拇指代表数字5;拇指以外的手指叫“群指”,每个都代表数字1;那么一只手加起来就是数字9;握拳代表数字0。
口诀为:食指伸开“l”,中指伸开“2”,
无名指为“3”,小指伸开“4”;四指一握伸拇指,拇指是“5”要记住;再伸食指到小指,“6”“7”“8”“9”排成数。
3、加法口诀:加几手指伸出几,个位加个位,十位加十位,直加群指若不够,伸出拇指做尾数。
4、两个数字相加,例如21+11:先把右手(个位数)增加一个手指(1+1),再把左手(十位数)增加一个手指(2+1),就可以得出结果32。
5、加法进位口诀:右手个位需先加,群指不够伸拇指,伸出拇指还不够,左手增加一群指,加法进位照此做,再加左手十位数。
例如33+28:先比出右手数字3(个位数),增加手指(3+8),群指不够用,伸出拇指(5)还是不够用;于是左手增加一个群指(3+1),这就是加法进位了;最后再加左手(十位数),增加手指(3+1+2),就可以得出结果61。

阅读全文

与大数字相加的速算法相关的资料

热点内容
光遇安卓怎么转ios教程小米 浏览:959
python儿童 浏览:42
程序员毕业半年后被辞退 浏览:641
开发板系统编译 浏览:390
pdf安装包下载 浏览:50
如何配置foxmail邮箱服务器 浏览:971
python解释器编译器源代码 浏览:113
服务器ip地址正确为什么连不上 浏览:82
飞天开放平台编程指南 浏览:114
文件夹向上一级 浏览:878
apachelinux配置域名 浏览:786
王者荣耀体验服服务器出错是什么意思 浏览:824
程序员对联意思 浏览:550
php追加txt 浏览:519
java验证码jsp 浏览:753
色铅笔画动漫pdf 浏览:260
a文件编译so 浏览:347
单片机power怎么改成接地 浏览:219
https是什么app 浏览:371
androidstudio优化设置 浏览:436