Ⅰ 基于粒子群的图像分割国内外研究现状
图像分割是图像理解的基础,也是图像分析的关键步骤。资料显示,在分割过程中使用的先验知识越多,算法的精度越高,分割能力越强,但分割的速度变慢。本文针对图像阈值分割的鲁棒性及分割速度问题,研究基于图像灰度阈值的快速分割技术和方法。 主要工作为综合利用灰色理论、小波变换、模糊理论、模式识别、熵及直方图等概念,构造新的阈值分割模型,提高分割质量;另一方面,采用20世纪我国学者开始关注的群体智能算法,通过其高效、并行寻优能力来优化分割模型,提高分割速度。 主要研究成果包括: (1)将遗传算法、小波变换、图像二维熵和灰色理论相结合,提出一种基于二维灰熵模型的快速SAR图像分割方法。理论分析和实验结果表明,与传统Abutaleb分割方法相比,该方法鲁棒性好且分割速度明显加快。 (2)将Tsallis熵运用到图像阈值分割,利用粒子群优化算法的并行寻优能力,提出一种基于灰色Tsallis熵的SAR图像快速分割方法。该方法较传统的图像分割方法更具灵活性,且分割速度较快。 (3)将模糊理论与狄色关联分析理论相结合,提出一种基于灰色模糊熵的SAR图像快速分割方法。该方法弥补了传统模糊分割方法对噪声敏感的缺陷,鲁棒性增强,而且经粒子群优化算法的优化后,分割速度提高。 (4)研究了模式识别理论中的Fisher判别准则函数,并以之作为图像阈值的选取准则,提出基于Fisher准则和灰色后处理的快速图像分割方法。该方法一方面降低了边界区域信息对分割结果的影响,一方面借助粒子群优化算法提高了阈值的搜索速度,减少了分割时间。
Ⅱ 基于图割优化的图像分割算法研究
扯概念 扣帽子 编数据 细排版
Ⅲ 模糊图像分割技术研究适合本科毕业论文吗
我能帮你写的。
要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。
(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,舍不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。
Ⅳ 图像分割中分水岭算法的流程是什么我论文答辩要做10分钟左右的讲解,给的越多越好,谢谢
分水岭算法的概念及原理
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。
分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即
g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5
式中,f(x,y)表示原始图像,grad{.}表示梯度运算。
分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。
为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。
为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即
g(x,y)=max(grad(f(x,y)),gθ)
式中,gθ表示阈值。
程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。
Ⅳ 数字图像处理中分割算法的研究!求大神
以前用过的一个比较笨的方法,多下载论文,尤其是国外论文(国内论文很多有滥竽充数之嫌),上面自适应分割算法很多。选出比较可信的论文,尝试着用C语言或OPENCV实现其中的分割算法,看下是否结果是否满意,在不断的试验中找到能获得最理想结果的算法。很多分割算法的理论基础是概率统计,求出使两类差别最大的一个阈值。曾经感觉比较好用的是最大类间方差法(大津法)。当然还是书上说的,不同的图像适用于不同的算法。每种算法都有充足的理由证明它能获得好的结果,但适用于特定处理对象的,往往需要多试验,有了好的试验结果,论文就好写了。另外,想要获得好的分割结果,合适的图像预处理是必须的。
Ⅵ 如何分析一个图像分割算法
论文阅读笔记:图像分割方法deeplab以及Hole算法解析
deeplab发表在ICLR
2015上。论文下载地址:Semantic
Image
Segmentation
with
Deep
Convolutional
Nets
and
Fully
Connected
CRFS.
deeplab方法概述
deeplab方法分为两步走,第一步仍然采用了FCN得到
coarse
score
map并插值到原图像大小,然后第二步借用fully
connected
CRF对从FCN得到的分割结果进行细节上的refine。
下面这张图很清楚地展示了整个结构:
然后这张图展示了CRF处理前后的效果对比,可以看出用了CRF以后,细节确实改善了很多:
deeplab对FCN更加优雅的处理方式
在第一步中,deeplab仍然采用了FCN来得到score
map,并且也是在VGG网络上进行fine-tuning。但是在得到score
map的处理方式上,要比原FCN处理的优雅很多。
还记得CVPR
2015的FCN中是怎么得到一个更加dense的score
map的吗?
是一张500x500的输入图像,直接在第一个卷积层上conv1_1来了一个100的大padding。最终在fc7层勉强得到一个16x16的score
map。虽然处理上稍显粗糙,但是毕竟人家是第一次将图像分割在CNN上搞成end-to-end,并且在当时performance是state-of-the-art,也很理解。
deeplab摒弃了这种做法,取而代之的是对VGG的网络结构上做了小改动:将VGG网络的pool4和pool5层的stride由原来的2改为了1。就是这样一个改动,使得vgg网络总的stride由原来的32变成8,进而使得在输入图像为514x514,正常的padding时,fc7能得到67x67的score
map,
要比FCN确实要dense很多很多。
但是这种改变网络结果的做法也带来了一个问题:
stride改变以后,如果想继续利用vgg
model进行fine
tuning,会导致后面filter作用的区域发生改变,换句话说就是感受野发生变化。这个问题在下图(a)
(b)中通过花括号体现出来了:
Hole算法
于是乎,作者想出了一招,来解决两个看似有点矛盾的问题:
既想利用已经训练好的模型进行fine-tuning,又想改变网络结构得到更加dense的score
map.
这个解决办法就是采用Hole算法。如下图(a)
(b)所示,在以往的卷积或者pooling中,一个filter中相邻的权重作用在feature
map上的位置都是物理上连续的。如下图(c)所示,为了保证感受野不发生变化,某一层的stride由2变为1以后,后面的层需要采用hole算法,具体来讲就是将连续的连接关系是根据hole
size大小变成skip连接的(图(c)为了显示方便直接画在本层上了)。不要被(c)中的padding为2吓着了,其实2个padding不会同时和一个filter相连。
pool4的stride由2变为1,则紧接着的conv5_1,
conv5_2和conv5_3中hole
size为2。接着pool5由2变为1,
则后面的fc6中hole
size为4。
代码
主要是im2col(前传)和col2im(反传)中做了改动
(增加了hole_w,
hole_h),这里只贴cpu的用于理解:
Ⅶ 图像分割的总结展望
对图像分割算法的研究已有几十年的历史,借助各种理论至今已提出了上千种各种类型的分割算法。尽管人们在图像分割方面做了许多研究工作。但由于尚无通用分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法。但是可以看出,图像分割方法正朝着更快速、更精确的方向发展,通过各种新理论和新技术结合将不断取得突破和进展。
Ⅷ 数字图像领域写论文起哪些题目比较好,几点关键词
1. 基于Auto-segmentation图像分割算法研究
2. 数字图像水印处理研究
3. 图像分割算法在OID软件中的应用研究
4.基于ARM的嵌入式图像处理技术研究
以上题目供参考.
Ⅸ 几种图像阈值分割算法的实现与比较
摘要:图像分割是进行图像分析的关键步骤,也是进一步理解图像的基础。该文主要论述了常用的几种图像阈值分割的算法及原理,并以研究沥青混合料的集料特征为背景,从实验角度对图像阈值分割的直方图阈值法、迭代法和大津法进行了分析比较,得出了结论。关键词:图像分割;直方图阈值法;迭代法;大津法中图分类号:TP391 文献标识码:A文章编号:1009-3044(2011)13-3109-03Achieve and Comparison of Image Segmentation Thresholding MethodCHEN Ning-ning(Department of Technology, Xi'an International University, Xi'an 710077, China)Abstract: Image segmentation is a key step for image analysis, Is also the basis for further understanding of the image. In this paper, discusses several commonly used image segmentation algorithms and theory, and to study the aggregate asphalt mixture characteristics of the background, experimental results are shown to compare histogram threshold, Iteration method and the Otsu.Key words: image segmentation; histogram threshold; iteration method; Otsu1 概述图像分割是进行图像分析的关键步骤,也是进一步理解图像的基础。