⑴ A*算法现实应用的实际意义
A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,我看还是先说说何谓启发式算法。
一、何谓启发式搜索算法
在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦)。由于求解问题的过程中分枝有很多,主要是求解过程中求解条件的不确定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。这个寻找的过程就是状态空间搜索。
常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。
前面说的广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。他的效率实在太低,甚至不可完成。在这里就要用到启发式搜索了。
启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无畏的搜索路径,提到了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。我们先看看估价是如何表示的。
启发中的估价是用估价函数表示的,如:
f(n) = g(n) + h(n)
其中f(n)是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。如果说详细点,g(n)代表了搜索的广度的优先趋势。但是当h(n)>>g(n)时,可以省略g(n),而提高效率。这些就深了,不懂也不影响啦!我们继续看看何谓A*算法。
二、初识A*算法
启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点(除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?其实A*算法也是一种最好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做近似。g(n)代替g'(n),但g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。哈!你懂了吗?肯定没懂!接着看!
举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。
再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这里就有一个平衡的问题。
⑵ 搜索算法中,A算法A*算法的区别(急)
a*算法:a*(a-star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好
a*
(a-star)算法是一种静态路网中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索算法。之后涌现了很多预处理算法(alt,ch,hl等等),在线查询效率是a*算法的数千甚至上万倍。
公式表示为:
f(n)=g(n)+h(n),
其中
f(n)
是从初始点经由节点n到目标点的估价函数,
g(n)
是在状态空间中从初始节点到n节点的实际代价,
h(n)
是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:
估价值h(n)<=
n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行,
此时的搜索效率是最高的。
如果
估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
⑶ A*算法的其它算法
启发式搜索其实有很多的算法
比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。像局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,并没有舍弃节点(除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?
⑷ A*算法的实际运用
估价值与实际值越接近,估价函数取得就越好
例如对于几何路网来说,可以取两节点间曼哈顿距离做为估价值,即f=g(n) + (abs(dx - nx) + abs(dy - ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijkstra算法的毫无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
详细内容:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
算起点的估价值;
将起点放入OPEN表; while(OPEN!=NULL){从OPEN表中取估价值f(n)最小的节点n;if(n节点==目标节点)break;for(当前节点n的每个子节点X){算X的估价值;if(XinOPEN)if(X的估价值小于OPEN表的估价值){把n设置为X的父亲;更新OPEN表中的估价值;//取最小路径的估价值}if(XinCLOSE)continue;if(Xnotinboth){把n设置为X的父亲;求X的估价值;并将X插入OPEN表中;//还没有排序}}//endfor将n节点插入CLOSE表中;按照估价值将OPEN表中的节点排序;//实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。}//endwhile(OPEN!=NULL)保存路径,即从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;
用C语言实现A*最短路径搜索算法 ,作者 Tittup frog(跳跳蛙)。 #include<stdio.h>#include<math.h>#defineMaxLength100//用于优先队列(Open表)的数组#defineHeight15//地图高度#defineWidth20//地图宽度#defineReachable0//可以到达的结点#defineBar1//障碍物#definePass2//需要走的步数#defineSource3//起点#defineDestination4//终点#defineSequential0//顺序遍历#defineNoSolution2//无解决方案#defineInfinity0xfffffff#defineEast(1<<0)#defineSouth_East(1<<1)#defineSouth(1<<2)#defineSouth_West(1<<3)#defineWest(1<<4)#defineNorth_West(1<<5)#defineNorth(1<<6)#defineNorth_East(1<<7)typedefstruct{signedcharx,y;}Point;constPointdir[8]={{0,1},//East{1,1},//South_East{1,0},//South{1,-1},//South_West{0,-1},//West{-1,-1},//North_West{-1,0},//North{-1,1}//North_East};unsignedcharwithin(intx,inty){return(x>=0&&y>=0&&x<Height&&y<Width);}typedefstruct{intx,y;unsignedcharreachable,sur,value;}MapNode;typedefstructClose{MapNode*cur;charvis;structClose*from;floatF,G;intH;}Close;typedefstruct//优先队列(Open表){intlength;//当前队列的长度Close*Array[MaxLength];//评价结点的指针}Open;staticMapNodegraph[Height][Width];staticintsrcX,srcY,dstX,dstY;//起始点、终点staticCloseclose[Height][Width];//优先队列基本操作voidinitOpen(Open*q)//优先队列初始化{q->length=0;//队内元素数初始为0}voidpush(Open*q,Closecls[Height][Width],intx,inty,floatg){//向优先队列(Open表)中添加元素Close*t;inti,mintag;cls[x][y].G=g;//所添加节点的坐标cls[x][y].F=cls[x][y].G+cls[x][y].H;q->Array[q->length++]=&(cls[x][y]);mintag=q->length-1;for(i=0;i<q->length-1;i++){if(q->Array[i]->F<q->Array[mintag]->F){mintag=i;}}t=q->Array[q->length-1];q->Array[q->length-1]=q->Array[mintag];q->Array[mintag]=t;//将评价函数值最小节点置于队头}Close*shift(Open*q){returnq->Array[--q->length];}//地图初始化操作voidinitClose(Closecls[Height][Width],intsx,intsy,intdx,intdy){//地图Close表初始化配置inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){cls[i][j].cur=&graph[i][j];//Close表所指节点cls[i][j].vis=!graph[i][j].reachable;//是否被访问cls[i][j].from=NULL;//所来节点cls[i][j].G=cls[i][j].F=0;cls[i][j].H=abs(dx-i)+abs(dy-j);//评价函数值}}cls[sx][sy].F=cls[sx][sy].H;//起始点评价初始值//cls[sy][sy].G=0;//移步花费代价值cls[dx][dy].G=Infinity;}voidinitGraph(constintmap[Height][Width],intsx,intsy,intdx,intdy){//地图发生变化时重新构造地inti,j;srcX=sx;//起点X坐标srcY=sy;//起点Y坐标dstX=dx;//终点X坐标dstY=dy;//终点Y坐标for(i=0;i<Height;i++){for(j=0;j<Width;j++){graph[i][j].x=i;//地图坐标Xgraph[i][j].y=j;//地图坐标Ygraph[i][j].value=map[i][j];graph[i][j].reachable=(graph[i][j].value==Reachable);//节点可到达性graph[i][j].sur=0;//邻接节点个数if(!graph[i][j].reachable){continue;}if(j>0){if(graph[i][j-1].reachable)//left节点可以到达{graph[i][j].sur|=West;graph[i][j-1].sur|=East;}if(i>0){if(graph[i-1][j-1].reachable&&graph[i-1][j].reachable&&graph[i][j-1].reachable)//up-left节点可以到达{graph[i][j].sur|=North_West;graph[i-1][j-1].sur|=South_East;}}}if(i>0){if(graph[i-1][j].reachable)//up节点可以到达{graph[i][j].sur|=North;graph[i-1][j].sur|=South;}if(j<Width-1){if(graph[i-1][j+1].reachable&&graph[i-1][j].reachable&&map[i][j+1]==Reachable)//up-right节点可以到达{graph[i][j].sur|=North_East;graph[i-1][j+1].sur|=South_West;}}}}}}intbfs(){inttimes=0;inti,curX,curY,surX,surY;unsignedcharf=0,r=1;Close*p;Close*q[MaxLength]={&close[srcX][srcY]};initClose(close,srcX,srcY,dstX,dstY);close[srcX][srcY].vis=1;while(r!=f){p=q[f];f=(f+1)%MaxLength;curX=p->cur->x;curY=p->cur->y;for(i=0;i<8;i++){if(!(p->cur->sur&(1<<i))){continue;}surX=curX+dir[i].x;surY=curY+dir[i].y;if(!close[surX][surY].vis){close[surX][surY].from=p;close[surX][surY].vis=1;close[surX][surY].G=p->G+1;q[r]=&close[surX][surY];r=(r+1)%MaxLength;}}times++;}returntimes;}intastar(){//A*算法遍历//inttimes=0;inti,curX,curY,surX,surY;floatsurG;Openq;//Open表Close*p;initOpen(&q);initClose(close,srcX,srcY,dstX,dstY);close[srcX][srcY].vis=1;push(&q,close,srcX,srcY,0);while(q.length){//times++;p=shift(&q);curX=p->cur->x;curY=p->cur->y;if(!p->H){returnSequential;}for(i=0;i<8;i++){if(!(p->cur->sur&(1<<i))){continue;}surX=curX+dir[i].x;surY=curY+dir[i].y;if(!close[surX][surY].vis){close[surX][surY].vis=1;close[surX][surY].from=p;surG=p->G+sqrt((curX-surX)*(curX-surX)+(curY-surY)*(curY-surY));push(&q,close,surX,surY,surG);}}}//printf(times:%d
,times);returnNoSolution;//无结果}constintmap[Height][Width]={{0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1},{0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1},{0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1},{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0},{0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,1},{0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}};constcharSymbol[5][3]={□,▓,▽,☆,◎};voidprintMap(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){printf(%s,Symbol[graph[i][j].value]);}puts();}puts();}Close*getShortest(){//获取最短路径intresult=astar();Close*p,*t,*q=NULL;switch(result){caseSequential://顺序最近p=&(close[dstX][dstY]);while(p)//转置路径{t=p->from;p->from=q;q=p;p=t;}close[srcX][srcY].from=q->from;return&(close[srcX][srcY]);caseNoSolution:returnNULL;}returnNULL;}staticClose*start;staticintshortestep;intprintShortest(){Close*p;intstep=0;p=getShortest();start=p;if(!p){return0;}else{while(p->from){graph[p->cur->x][p->cur->y].value=Pass;printf((%d,%d)→
,p->cur->x,p->cur->y);p=p->from;step++;}printf((%d,%d)
,p->cur->x,p->cur->y);graph[srcX][srcY].value=Source;graph[dstX][dstY].value=Destination;returnstep;}}voidclearMap(){//ClearMapMarksofStepsClose*p=start;while(p){graph[p->cur->x][p->cur->y].value=Reachable;p=p->from;}graph[srcX][srcY].value=map[srcX][srcY];graph[dstX][dstY].value=map[dstX][dstY];}voidprintDepth(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){if(map[i][j]){printf(%s,Symbol[graph[i][j].value]);}else{printf(%2.0lf,close[i][j].G);}}puts();}puts();}voidprintSur(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){printf(%02x,graph[i][j].sur);}puts();}puts();}voidprintH(){inti,j;for(i=0;i<Height;i++){for(j=0;j<Width;j++){printf(%02d,close[i][j].H);}puts();}puts();}intmain(intargc,constchar**argv){initGraph(map,0,0,0,0);printMap();while(scanf(%d%d%d%d,&srcX,&srcY,&dstX,&dstY)!=EOF){if(within(srcX,srcY)&&within(dstX,dstY)){if(shortestep=printShortest()){printf(从(%d,%d)到(%d,%d)的最短步数是:%d
,srcX,srcY,dstX,dstY,shortestep);printMap();clearMap();bfs();//printDepth();puts((shortestep==close[dstX][dstY].G)?正确:错误);clearMap();}else{printf(从(%d,%d)不可到达(%d,%d)
,srcX,srcY,dstX,dstY);}}else{puts(输入错误!);}}return(0);}
⑸ pdiibq 改进A_Star算法
//程序需要一个输入文件,名称必须为 in.txt
//A_Star算法是个很有名的算法,从程序竞赛,到网络选择,到游戏设计都有很大的应用
//我将A_Star算法做了一点小小的改进(但不知道这个改进以前有没有人做过)用来算迷宫。
//主要的改动是首先判断G(n)是否足够小,如果足够小则直接放弃向前搜索,因为已经有过更短的路径穿过这个点了
//网上的算法都是使用F(n)=G(n)+H(n)来判断该选择那个方向的下一步,而没有验证G(n)是否足够小
#include <stdio.h>
#include <string.h>
#include <math.h>
const unsigned int Largest=~0; //无符号int的最大值
struct Step //步
{
unsigned int X,Y;
unsigned char ZhuBin;
};
unsigned char Detect[9]={1<<7,1<<6,1<<5,1<<4,1<<3,1<<2,1<<1,1<<0,0xFF}; //探针
char **Maze; //原始迷宫
unsigned int SizeX,SizeY; //迷宫尺寸
unsigned int StartX,StartY; //起点
unsigned int EndX,EndY; //终点
Step *WorkPath; //工作栈
char *StepKind; //表示前进的步是斜向还是横竖向,以便缩减步长
unsigned int WorkLenth,Length; //总步数与总步长
char **ResultMaze; //结果迷宫
unsigned int ResultLength; //最短步长和
unsigned int **GDistance,**HDistance; //辅助表,这个是关键
int MoveX[8]={0,1,1,1,0,-1,-1,-1},MoveY[8]={-1,-1,0,1,1,1,0,-1}; //偏移量
int Read(char pFileName[])
{
FILE *pFile;
if( (pFile=fopen(pFileName,"r")) == 0)
{
printf("不能打开文件 %s\n",pFileName);
return 0;
}
fscanf(pFile,"%d %d",&SizeX,&SizeY);
fscanf(pFile,"%d %d",&StartX,&StartY);
fscanf(pFile,"%d %d",&EndX,&EndY);
unsigned int i,j;
WorkPath=new Step[SizeX*SizeY+1];//动态一维分配工作栈
StepKind=new char[SizeX*SizeY+1];
Maze=new char *[SizeY+1]; //动态二维分配迷宫与辅助表
GDistance=new unsigned int *[SizeY+1];
HDistance=new unsigned int *[SizeY+1];
ResultMaze=new char *[SizeY+1];
for(j=1;j<=SizeY;j++)
{
Maze[j]=new char [SizeX+1];
GDistance[j]=new unsigned int [SizeX+1];
HDistance[j]=new unsigned int [SizeX+1];
ResultMaze[j]=new char [SizeX+1];
}
fgetc(pFile);
for(j=1;j<=SizeY;j++)
{
for(i=1;i<=SizeX;i++)
{
ResultMaze[j][i]=(Maze[j][i]=fgetc(pFile)-'0');
GDistance[j][i]=Largest;
HDistance[j][i]=(unsigned int)(sqrt((i-EndX)*(i-EndX)+(j-EndY)*(j-EndY))*5.0);
}
fgetc(pFile);
}
fclose(pFile);
return 1;
}
int OutTable_F(char **p,char pFileName[])
{
FILE *pFile;
if( (pFile=fopen(pFileName,"w")) == 0)
return 0;
fprintf(pFile,"迷宫程序,采用自己改进的A_Star算法。作者:朱斌 [email protected]\n");
fprintf(pFile,"\n");
unsigned int i,j;
for(i=1 ; i<=SizeX+2 ; i++)
fprintf(pFile,"■");
fprintf(pFile,"\n");
for(j=1;j<=SizeY;j++)
{
fprintf(pFile,"■");
for(i=1;i<=SizeX;i++)
{
if(p[j][i]==0)
fprintf(pFile," ");
else if(p[j][i]==1)
fprintf(pFile,"■");
else
fprintf(pFile,"⊙");
}
fprintf(pFile,"■");
fprintf(pFile,"\n");
}
for(i=1 ; i<=SizeX+2 ; i++)
fprintf(pFile,"■");
fprintf(pFile,"\n");
fclose(pFile);
return 1;
}
⑹ A*算法用于路径规划,有什么缺点
缺点:A*算法通过比较当前路径栅格的8个邻居的启发式函数值F来逐步确定下一个路径栅格,当存在多个最小值时A*算法不能保证搜索的路径最优。
A*算法;A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好。A*[1] (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法。注意是最有效的直接搜索算法。之后涌现了很多预处理算法(ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。公式表示为: f(n)=g(n)+h(n),其中 f(n) 是从初始点经由节点n到目标点的估价函数,g(n) 是在状态空间中从初始节点到n节点的实际代价,h(n) 是从n到目标节点最佳路径的估计代价。保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。如果 估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
⑺ A*算法的好处
其实A*算法也是一种最好优先的算法
只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!
我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到节点n的最短路径值,h'(n)是n到目标的最短路经的启发值。由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。
举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。
再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这里就有一个平衡的问题。
⑻ 什么是 a算法a* 算法有什么特点
A*算法:A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好
A* (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索算法。之后涌现了很多预处理算法(ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。
公式表示为: f(n)=g(n)+h(n),
其中 f(n) 是从初始点经由节点n到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n) 是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。
如果 估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
⑼ A*算法如何改进
十万火急:此改进的模糊C-此函数实现遗传算法,用于模糊C-均值聚类 %% A=farm(:,Ser(1)); B=farm(:,Ser(2)); P0=unidrnd(M-1); a=[