导航:首页 > 源码编译 > matlab骨架提取算法

matlab骨架提取算法

发布时间:2022-06-08 02:20:11

❶ matlab 图像骨架化问题请教

可以用函数 bwmorph() 来解决,查看一下 bwmorph() 里面的选项

BW2 = bwmorph(BW1,'remove'); %提取边缘
BW3 = bwmorph(BW2,'skel',Inf); %骨架化

❷ matlab实现开运算与闭运算的代ch=rainbow.wty.ask还有 MATLAB如何实现骨架

是图像处理吧,可以用imopen、imclose函数实现开闭运算,用bwmorph来实现骨架提取

❸ 求MATLAB代码

MATLAB实用源代码
1图像的读取及旋转
A=imread('');%读取图像
subplot(2,2,1),imshow(A),title('原始图像');%输出图像
I=rgb2gray(A);
subplot(2,2,2),imshow(A),title('灰度图像');
subplot(2,2,3),imhist(I),title('灰度图像直方图');%输出原图直方图
theta = 30;J = imrotate(I,theta);% Try varying the angle, theta.
subplot(2,2,4), imshow(J),title(‘旋转图像’)
2边缘检测
I=imread('C:\Users\HP\Desktop\平时总结\路飞.jpg');
subplot(2,2,1),imshow(I),title('原始图像');
I1=edge(I,'sobel');
subplot(2,2,2),imshow(I1),title('sobel边缘检测');
I2=edge(I,'prewitt');
subplot(2,2,3),imshow(I2),title('prewitt边缘检测');
I3=edge(I,'log');
subplot(2,2,4),imshow(I3),title('log边缘检测');
3图像反转
MATLAB 程序实现如下:
I=imread('xian.bmp');
J=double(I);
J=-J+(256-1);%图像反转线性变换
H=uint8(J);
subplot(1,2,1),imshow(I);
subplot(1,2,2),imshow(H);
4.灰度线性变换
MATLAB 程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;%显示坐标系
I1=rgb2gray(I);
subplot(2,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]
subplot(2,2,3),imshow(J);
title('线性变换图像[0.1 0.5]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]
subplot(2,2,4),imshow(K);
title('线性变换图像[0.3 0.7]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
5.非线性变换
MATLAB 程序实现如下:
I=imread('xian.bmp');
I1=rgb2gray(I);
subplot(1,2,1),imshow(I1);
title(' 灰度图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
J=double(I1);
J=40*(log(J+1));
H=uint8(J);
subplot(1,2,2),imshow(H);
title(' 对数变换图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
4.直方图均衡化
MATLAB 程序实现如下:
I=imread('xian.bmp');
I=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I);
subplot(2,2,2);
imhist(I);
I1=histeq(I);
figure;
subplot(2,2,1);
imshow(I1);
subplot(2,2,2);
imhist(I1);
5. 线性平滑滤波器
用MATLAB实现领域平均法抑制噪声程序:
I=imread('xian.bmp');
subplot(231)
imshow(I)
title('原始图像')
I=rgb2gray(I);
I1=imnoise(I,'salt & pepper',0.02);
subplot(232)
imshow(I1)
title(' 添加椒盐噪声的图像')
k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波
k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波
k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波
subplot(233),imshow(k1);title('3*3 模板平滑滤波');
subplot(234),imshow(k2);title('5*5 模板平滑滤波');
subplot(235),imshow(k3);title('7*7 模板平滑滤波');
subplot(236),imshow(k4);title('9*9 模板平滑滤波');
6.中值滤波器
用MATLAB实现中值滤波程序如下:
I=imread('xian.bmp');
I=rgb2gray(I);
J=imnoise(I,'salt&pepper',0.02);
subplot(231),imshow(I);title('原图像');
subplot(232),imshow(J);title('添加椒盐噪声图像');
k1=medfilt2(J); %进行3*3模板中值滤波
k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波
k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波
k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波
subplot(233),imshow(k1);title('3*3模板中值滤波');
subplot(234),imshow(k2);title('5*5模板中值滤波 ');
subplot(235),imshow(k3);title('7*7模板中值滤波');
subplot(236),imshow(k4);title('9*9 模板中值滤波');
7.用Sobel算子和拉普拉斯对图像锐化:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on;%显示坐标系
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
H=fspecial('sobel');%选择sobel算子
J=filter2(H,I1); %卷积运算
subplot(2,2,3),imshow(J);
title('sobel算子锐化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on;%显示坐标系
h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子
J1=conv2(I1,h,'same');%卷积运算
subplot(2,2,4),imshow(J1);
title('拉普拉斯算子锐化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
8.梯度算子检测边缘
用 MATLAB实现如下:
I=imread('xian.bmp');
subplot(2,3,1);
imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I1=im2bw(I);
subplot(2,3,2);
imshow(I1);
title('二值图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I2=edge(I1,'roberts');
figure;
subplot(2,3,3);
imshow(I2);
title('roberts算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I3=edge(I1,'sobel');
subplot(2,3,4);
imshow(I3);
title('sobel算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I4=edge(I1,'Prewitt');
subplot(2,3,5);
imshow(I4);
title('Prewitt算子分割结果 ');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
9.LOG算子检测边缘
用 MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1);
imshow(I);
title('原始图像');
I1=rgb2gray(I);
subplot(2,2,2);
imshow(I1);
title('灰度图像');
I2=edge(I1,'log');
subplot(2,2,3);
imshow(I2);
title('log算子分割结果');
10.Canny算子检测边 缘
用MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1);
imshow(I);
title('原始图像')
I1=rgb2gray(I);
subplot(2,2,2);
imshow(I1);
title('灰度图像');
I2=edge(I1,'canny');
subplot(2,2,3);
imshow(I2);
title('canny算子分割结果');
11.边界跟踪 (bwtraceboundary函数)
clc
clear all
I=imread('xian.bmp');
figure
imshow(I);
title('原始图像');
I1=rgb2gray(I); %将彩色图像转化灰度图像
threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限
BW=im2bw(I1, threshold); %将灰度图像转化为二值图像
figure
imshow(BW);
title('二值图像');
dim=size(BW);
col=round(dim(2)/2)-90; %计算起始点列坐标
row=find(BW(:,col),1); %计算起始点行坐标
connectivity=8;
num_points=180;
contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_points);
%提取边界
figure
imshow(I1);
hold on;
plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2);
title('边界跟踪图像');
12.Hough变换
I= imread('xian.bmp');
rotI=rgb2gray(I);
subplot(2,2,1);
imshow(rotI);
title('灰度图像');
axis([50,250,50,200]);
grid on;
axis on;
BW=edge(rotI,'prewitt');
subplot(2,2,2);
imshow(BW);
title('prewitt算子边缘检测 后图像');
axis([50,250,50,200]);
grid on;
axis on;
[H,T,R]=hough(BW);
subplot(2,2,3);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
title('霍夫变换图');
xlabel('\theta'),ylabel('\rho');
axis on , axis normal, hold on;
P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x=T(P(:,2));y=R(P(:,1));
plot(x,y,'s','color','white');
lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
subplot(2,2,4);,imshow(rotI);
title('霍夫变换图像检测');
axis([50,250,50,200]);
grid on;
axis on;
hold on;
max_len=0;
for k=1:length(lines)
xy=[lines(k).point1;lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
len=norm(lines(k).point1-lines(k).point2);
if(len>max_len)
max_len=len;
xy_long=xy;
end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');
13.直方图阈值法
用 MATLAB实现直方图阈值法:
I=imread('xian.bmp');
I1=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I1);
title(' 灰度图像')
axis([50,250,50,200]);
grid on;%显示网格线
axis on; %显示坐标系
[m,n]=size(I1);%测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(I1==k))/(m*n);%计算每级灰度出现的概率,将其存入GP中相应位置
end
subplot(2,2,2),bar(0:255,GP,'g')%绘制直方图
title('灰度直方图')
xlabel('灰度值')
ylabel(' 出现概率')
I2=im2bw(I,150/255);
subplot(2,2,3),imshow(I2);
title('阈值150的分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I3=im2bw(I,200/255); %
subplot(2,2,4),imshow(I3);
title('阈值200的分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
14. 自动阈值法:Otsu法
用MATLAB实现Otsu算法
clc
clear all
I=imread('xian.bmp');
subplot(1,2,1),imshow(I);
title('原始图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
level=graythresh(I); %确定灰度阈值
BW=im2bw(I,level);
subplot(1,2,2),imshow(BW);
title('Otsu 法阈值分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
15.膨胀操作
I=imread('xian.bmp'); %载入图像
I1=rgb2gray(I);
subplot(1,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
se=strel('disk',1); %生成圆形结构元素
I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀
subplot(1,2,2);
imshow(I2);
title(' 膨胀后图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
16.腐蚀操作
MATLAB 实现腐蚀操作
I=imread('xian.bmp'); %载入图像
I1=rgb2gray(I);
subplot(1,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
se=strel('disk',1); %生成圆形结构元素
I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀
subplot(1,2,2);
imshow(I2);
title('腐蚀后图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
17.开启和闭合操作
用 MATLAB实现开启和闭合操作
I=imread('xian.bmp'); %载入图像
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on; %显示坐标系
I1=rgb2gray(I);
subplot(2,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
se=strel('disk',1); %采用半径为1的圆作为结构元素
I2=imopen(I1,se); %开启操作
I3=imclose(I1,se); %闭合操作
subplot(2,2,3),imshow(I2);
title('开启运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
subplot(2,2,4),imshow(I3);
title('闭合运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
18.开启和闭合组合操作
I=imread('xian.bmp');%载入图像
subplot(3,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;%显示坐标系
I1=rgb2gray(I);
subplot(3,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on;%显示坐标系
se=strel('disk',1);
I2=imopen(I1,se);%开启操作
I3=imclose(I1,se);%闭合操作
subplot(3,2,3),imshow(I2);
title('开启运算后图像');
axis([50,250,50,200]);
axis on;%显示坐标系
subplot(3,2,4),imshow(I3);
title('闭合运算后图像');
axis([50,250,50,200]);
axis on;%显示坐标系
se=strel('disk',1);
I4=imopen(I1,se);
I5=imclose(I4,se);
subplot(3,2,5),imshow(I5);%开—闭运算图像
title('开—闭运算图像');
axis([50,250,50,200]);
axis on;%显示坐标系
I6=imclose(I1,se);
I7=imopen(I6,se);
subplot(3,2,6),imshow(I7);%闭—开运算图像
title('闭—开运算图像');
axis([50,250,50,200]);
axis on;%显示坐标系
19.形态学边界提取
利用 MATLAB实现如下:
I=imread('xian.bmp');%载入图像
subplot(1,3,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
I1=im2bw(I);
subplot(1,3,2),imshow(I1);
title('二值化图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
I2=bwperim(I1); %获取区域的周长
subplot(1,3,3),imshow(I2);
title('边界周长的二值图像');
axis([50,250,50,200]);
grid on;
axis on;
20.形态学骨架提取
利用MATLAB实现如下:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
axis on;
I2=bwmorph(I1,'skel',1);
subplot(2,2,3),imshow(I2);
title('1次骨架提取');
axis([50,250,50,200]);
axis on;
I3=bwmorph(I1,'skel',2);
subplot(2,2,4),imshow(I3);
title('2次骨架提取');
axis([50,250,50,200]);
axis on;
21.直接提取四个顶点坐标
I = imread('xian.bmp');
I = I(:,:,1);
BW=im2bw(I);
figure
imshow(~BW)
[x,y]=getpts
平滑滤波
h=fspecial('average',9);
I_gray=imfilter(I_gray,h,'replicate');%平滑滤波

❹ matlab中怎样实现字符骨架的提取

其实呢车牌识别现在技术上已经很成熟了,至于骨架提取很多人肯定早就尝试了,不过还是希望楼主能找出一种更好的方法,我这里有提取骨架的一般算法可以参考:(不一定适用于车牌识别的)
形态学骨架提取
利用MATLAB实现如下:
I=imread(''c4.jpg'');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
axis on;
I2=bwmorph(I1,'skel',1);
subplot(2,2,3),imshow(I2);
title('1次骨架提取');
axis([50,250,50,200]);
axis on;
I3=bwmorph(I1,'skel',2);
subplot(2,2,4),imshow(I3);
title('2次骨架提取');
axis([50,250,50,200]);
axis on;
我也是做车牌的,如果有兴趣可以交流,现在车牌越来越复杂了,得换崭新的思路才是王道啊

❺ 求二维图形(或图像)的骨架提取(skeleton extraction或medial axis extraction)方面的综述论文

20.形态学骨架提取

利用MATLAB实现如下:

I=imread('xian.bmp');

subplot(2,2,1),imshow(I);

title('原始图像');

axis([50,250,50,200]);

axis on;

I1=im2bw(I);

subplot(2,2,2),imshow(I1);

title('二值图像');

axis([50,250,50,200]);

axis on;

I2=bwmorph(I1,'skel',1);

subplot(2,2,3),imshow(I2);

title('1次骨架提取');

axis([50,250,50,200]);

axis on;

I3=bwmorph(I1,'skel',2);

subplot(2,2,4),imshow(I3);

title('2次骨架提取');

axis([50,250,50,200]);

axis on;

❻ 怎么提取matlab矩阵中的所有数据

在matlab中,取出矩阵中某一个值的方法如下: 1、对于二维数组: a(i, j) % 表示取出二维数组a的第 i 行,第 j 列的数据 a(:, j) % 表示取出二维数组a的第 j 列的所有数据 a(i, :) % 表示取出二维数组a的第 i 行的所有数据 2、多维数组的方法

❼ matlab中怎么取一个矩阵的一部分

1、打开matlab,在命令行窗口中输入a=[1 2 3 4;4 5 6 7;1 2 3 4],按回车键创建一个3行4列的矩阵。

❽ MATLAB如何提取一个矩阵的前n行和后n行

1、当括号后面的最后内容设置为ture条件,那么你提取数据的时候,一般抽取的数据会一直从原始数据中抽取。但是如果false条件,提取数据的时候,每次提取之后,再次提取数据会在那些数据之外的数据中进行提取。

(8)matlab骨架提取算法扩展阅读:

matlab中要取一个矩阵的一部分,可以参考以下内容:

比如说有一个5×5的矩阵,想取它右下脚3*2的矩阵,应该用命令:

a=zeros(5,5)

b=a(3:5,4:5)%取a的(3-5行,4-5列)

b即为所取

matlab中取一个矩阵的一部分(比如格式A(m,n),用于提取矩阵A中符合m,n要求的部分):

1、提取某个元素,则m,n为数字标量,如A(2,3)为第二行第三列的元素。

2、提取某行某列

A(:,n)提取第n列的所有元素,如A(:,3)提取第三列的所有元素;

A(m,:)提取第m行的所有元素,如A(3,:)提取第三行的所有元素;

❾ 如何用matlab算法准确的提取一幅图像上的直线和圆的切点

图画出来之后,在figure窗口点击tool菜单,选中datacursor,然后在图形区单击鼠标右键,选择createnewdatatip,就可以手工标注任意一点的坐标值了。MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。

❿ matlab如何获取图像骨架点及对应半径

1、首先,对上述图形进行处理。

阅读全文

与matlab骨架提取算法相关的资料

热点内容
华为mml命令查看用户量 浏览:905
场论朗道pdf 浏览:369
如何使用qtquick编译器 浏览:46
山西高配服务器云服务器 浏览:740
为什么编译按f9没反应 浏览:118
购物app都适合买什么东西 浏览:273
savetxt函数python 浏览:573
编译器小端改大端 浏览:638
华为安卓哪些文件夹能删除 浏览:402
手机samp服务器地址 浏览:205
phpformat函数 浏览:563
单片机由线 浏览:591
如何查找方舟编译过的app 浏览:897
青山有什么做算法的公司 浏览:568
硬件编译原理图 浏览:162
程序员技术总监 浏览:72
程序员网易云报告 浏览:463
studio编译功能在哪里 浏览:242
空气压缩机尺寸 浏览:988
sockethttpsphp 浏览:488