Ⅰ 如何评价一个好的推荐系统算法 – 我爱机器学习
如何更好地掌握机器学习Colorado是伯克利大学的在读博士,同时也是Metacademy的创始人。Metacademy是一个优秀的开源平台,许多专业人员共同在这个平台上编写wiki文章。目前,这些文章主要围绕着机器学习和人工智能这两个主题。在Colorado的建议中,更好地学习机器学习的方法就是不断的通过书本学习。他认为读书的目的就是让心中有书。一个博士在读生给出这样的建议并不令人惊讶,以前本站可能还推荐过类似的建议。这个建议还可以,但我不认为适用每个人。如果你是个开发者,想实现机器学习的算法。下面列出的书籍是一个很好的参考,可以从中逐步学习。机器学习路线图他的关于机器学习的路线图分为5个级别,每个级别都对应一本书必须要掌握的书。这5个级别如下:Level0(新手):阅读《DataSmart:》。需要了解电子表格、和一些算法的高级数据流。Level1(学徒):阅读《MachineLearningwithR》。学习在不同的情况下用R语言应用不同的机器学习算法。需要一点点基本的编程、线性代数、微积分和概率论知识。Level2(熟练工):阅读《》。从数学角度理解机器学习算法的工作原理。理解并调试机器学习方法的输出结果,同时对机器学习的概念有更深的了解。需要有算法、较好的线性代数、一些向量积分、一些算法实现经验。Level3(大师):阅读《ProbabilisticGraphicalModels:PrinciplesandTechniques》。深入了解一些高级主题,如凸优化、组合优化、概率论、微分几何,及其他数学知识。深入了解概率图模型,了解何时应该使用以及如何解释其输出结果。Leval4(宗师):随便去学吧,记得反馈社区。Colorado针对每个级别中列出的书中章节阅读建议,并给出了建议去了解的相关顶级项目。Colorado后来重新发布了一篇博客,其中对这个路线图做了一点修改。他移除了最后一个级别,并如下定义了新的级别:好奇者、新手、学徒、熟练工、大师。他说道,Level0中的机器学习好奇者不应该阅读相关书籍,而是浏览观看与机器学习有关的顶级视频。机器学习中被忽视的主题ScottLocklin也阅读了Colorado的那篇博客,并从中受到了启发,写了一篇相应的文章,名为“机器学习中被忽视的想法”(文中有BorisArtzybasheff绘制的精美图片)。Scott认为Colorado给出的建议并没有充分的介绍机器学习领域。他认为很少有书籍能做到这一点,不过他还是喜欢PeterFlach所着的《MachineLearning:》这本书,因为书中也接触了一些隐晦的技术。Scott列出了书本中过分忽视的内容。如下所示:实时学习:对流数据和大数据很重要,参见VowpalWabbit。强化学习:在机器人方面有过讨论,但很少在机器学习方面讨论。“压缩”序列预测技术:压缩数据发现学习模式。参见CompLearn。面向时间序列的技术。一致性预测:为实时学习精确估计模型。噪声背景下的机器学习:如NLP和CV。特征工程:机器学习成功的关键。无监督和半监督学习。这个列表很好的指出了机器学习中没有注意到的领域。最后要说明的是,我自己也有一份关于机器学习的路线图。与Colorado一样,我的路线图仅限于分类/回归类型的监督机器学习,但还在完善中,需要进一步的调查和添加所有感兴趣的主题。与前面的“读这些书就可以了”不同,这个路线图将会给出详细的步骤。
Ⅱ 推荐算法有哪些
推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西。
基于协同过滤的推荐
基于用户的协同过滤算法: 基于一个这样的假设“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”所以基于用户的协同过滤主要的任务就是找出用户的最近邻居,从而根据最近邻 居的喜好做出未知项的评分预测。这种算法主要分为3个步骤:
1、用户评分。可以分为显性评分和隐形评分两种。显性评分就是直接给项目评分(例如给网络里的用户评分),隐形评分就是通过评价或是购买的行为给项目评分 (例如在有啊购买了什么东西)。
2、寻找最近邻居。这一步就是寻找与你距离最近的用户,测算距离一般采用以下三种算法:1.皮尔森相关系数。2.余弦相似性。3调整余弦相似性。调整余弦 相似性似乎效果会好一些。
3、推荐。产生了最近邻居集合后,就根据这个集合对未知项进行评分预测。把评分最高的N个项推荐给用户。 这种算法存在性能上的瓶颈,当用户数越来越多的时候,寻找最近邻居的复杂度也会大幅度的增长。
组合推荐
在组合方式上,有研究人员提出了七种组合思路:
1、加权(Weight):加权多种推荐技术结果。
2、变换(Switch):根据问题背景和实际情况或要求决定变换采用不同的推荐技术。
3、混合(Mixed):同时采用多种推荐技术给出多种推荐结果为用户提供参考。
4、特征组合(Feature combination):组合来自不同推荐数据源的特征被另一种推荐算法所采用。
5、层叠(Cascade):先用一种推荐技术产生一种粗糙的推荐结果,第二种推荐技术在此推荐结果的基础上进一步作出更精确的推荐。
6、特征扩充(Feature augmentation):一种技术产生附加的特征信息嵌入到另一种推荐技术的特征输入中。
7、元级别(Meta-level):用一种推荐方法产生的模型作为另一种推荐方法的输入。
Ⅲ 什么是算法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
Ⅳ 研究生 推荐算法还值得研究吗
值得。
推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,应用推荐算法比较好的地方主要是网络。。
个性化推荐概念的首次出现是在1995年3月的美国人工智能协会上,由卡耐基梅隆大学的RobertArmstrong等提出了个性化导航系统WebWatcher。
Ⅳ 如何看待算法推荐技术利用用户数据推送新闻信息
摘要 但是后期但是到了后期,平台的壮大使得它有一定的绝对话语权,使得新闻推送不一定是以优质内容为主,同时也使得用户所接受的信息面变窄。
Ⅵ 现在火热的推荐算法,对于用户是利大还是弊大
算法只是工具。重要的是使用它的人。
以罂粟为例:在医学中用于麻醉,减轻手术中病人的痛苦。而有些人出于利益驱使,将其制作成鸦片,毒害人的身心健康。
算法也是如此。不过商人注重利益,算法在他们手中就是赚钱的工具,甚至有些商人没有底线。
Ⅶ 算法推荐服务是什么
算法推荐服务是:在本质上,算法是“以数学方式或者计算机代码表达的意见”。其中,推荐系统服务就是一个信息过滤系统,帮助用户减少因浏览大量无效数据而造成的时间、精力浪费。
并且在早期的研究提出了通过信息检索和过滤的方式来解决这个问题。到了上世纪90年代中期,研究者开始通过预测用户对推荐的物品、内容或服务的评分,试图解决信息过载问题。推荐系统由此也作为独立研究领域出现了。
用算法推荐技术是指:应用算法推荐技术,是指利用生成合成类、个性化推送类、排序精选类、检索过滤类、调度决策类等算法技术向用户提供信息。
基于内容的推荐方法:根据项的相关信息(描述信息、标签等)、用户相关信息及用户对项的操作行为(评论、收藏、点赞、观看、浏览、点击等),来构建推荐算法模型。
是否推荐算法服务会导致信息窄化的问题:
推荐技术并不是单纯地“投其所好”。在一些专家看来,在推荐已知的用户感兴趣内容基础上,如果能深入激发、满足用户的潜在需求,那么算法就能更好地满足人对信息的多维度诉求。
在外界的印象里,个性化推荐就像漏斗一样,会将推荐内容与用户相匹配,倾向于向用户推荐高度符合其偏好的内容,致使推荐的内容越来越窄化。
但与外界的固有认知相反,《报告》认为在行业实践中,互联网应用(特别是位于头部的大型平台)有追求算法多样性的内在动力。
在对行业内代表性应用的数据分析后,《报告》发现,阅读内容的类型数量是否够多、所阅读内容类型的分散程度是否够高,与用户是否能长期留存关联密切,呈正相关。上述两项指标对用户长期留存的作用,可以与信息的展现总量、用户的停留时长、用户阅读量等指标的影响相媲美。
Ⅷ 南大用推荐算法分宿舍有何意义
又到新生开学季。“00后即将踏入大学校园”,翻开他们人生崭新的一页。而南京大学为了帮助新生们更快找到志趣相投的舍友,更好适应大学生活,在去年给新生按照生活习惯分宿舍的基础之上,今年推出了算法推荐2.0优化版本——通过校园迎新网的数据调查,统计新生的生活习惯、兴趣爱好等,再通过大数据“推荐算法”,量化评估各项数据之间的相似度,进行舍友分配。
南大此番另辟蹊径地用推荐算法分宿舍,可以说彰显了一座学校的人性化。在自主选宿舍机制仍需探索的情况下,用推荐算法分宿舍,是对“互联网+”的灵活运用,也是校园管理思路的拓展。接下来,该举措是否值得广而鉴之,不妨且看且期待。
来源:新京报
Ⅸ 算法推荐利弊分析
横河或Fluke采用的平均算法,算的是两相的平均值,不能作为第三相的值。否则,将得到错误的结论。举例说,a、b、c三相,b接单相电的N端,a、c一起接L端。此时,应该有:Uab=Ucb;Uca=0;若采用平均法,就有Uca=Uab=Ucb。