1. 压缩式制冷机的工作原理
各种制冷机的工作原理有其共同之点,也有不同之点。 由压缩机、冷凝器、蒸发器、节流机构和一些辅助设备组成。这类制冷机的制冷剂在常温和普通低温下能够液化,在制冷机的工作过程中制冷剂周期性地冷凝和蒸发。常用的蒸气压缩式制冷机有单级的、两级的和复叠式3种。
① 单级蒸气压缩式制冷机:制冷剂从蒸发压力提高到冷凝压力只经过一级压缩的蒸气压缩式制冷机,简称单级制冷机。单级制冷机由压缩机、冷凝器、节流机构和蒸发器等组成(图2)。由压缩机排出的高压蒸气经冷凝器放出热量而冷凝成液体。接着,液体制冷剂经节流阀(膨胀阀)节流,压力和温度同时降低,进入蒸发器中,吸取载冷剂(用它去再冷却被冷却物体)的热量而蒸发成蒸气。然后,蒸气进入压缩机继续压缩,如此循环不已。为提高经济性,有的单级制冷机还在冷凝器后设置过冷器和回热器。单级制冷机的蒸发温度通常在-30~5℃之间。
② 两级蒸气压缩式制冷机:制冷剂从蒸发压力提高到冷凝压力需要经过两级压缩的蒸气制冷机(图3) 。它比单级制冷机多一台压缩机、一台中间冷却器和节流阀。经高压压缩机压缩后的制冷剂蒸气,在冷凝器中冷凝成液体,然后分成两路:一路经节流阀A进入中间冷凝器,冷却低压压缩机的排气和盘管中的液体,在中间冷凝器中蒸发的制冷剂蒸气连同低压压缩机的排气一同进入高压压缩机继续压缩;另一路在盘管内被冷却并经过节流阀B节流至蒸发压力,进入蒸发器中蒸发制冷,蒸发后的蒸气进入低压压缩机压缩至中间压力,进入中间冷凝器。与单级制冷机相比,两级制冷机可达到较低的蒸发温度,通常在-30~-70℃之间。
③ 复叠式制冷机:用不同制冷剂作为工作介质的两台(或数台)单级或两级压缩蒸气压缩式制冷机,用冷凝蒸发器联系起来的复合制冷机。冷凝蒸发器是一个利用高温级制冷剂的蒸发来冷凝低温级制冷剂的换热器。复叠式制冷机能达到很低的蒸发温度。图4为两个单级制冷机组成的复叠式制冷机的工作原理。它的高温级由高温级压缩机、冷凝器、节流阀和冷凝蒸发器组成;低温级由低温级压缩机、冷凝蒸发器、回热器、节流阀和蒸发器组成。高温级和低温级各为一台单级制冷机。冷凝蒸发器将高温级与低温级联系起来:对高温级来说,它是蒸发器;对低温级来说,它是冷凝器。冷凝蒸发器使低温级的放热量转变为高温级的制冷量。在低温级中,通常使用沸点较低的制冷剂(如R13),停机后制冷剂将全部气化,并导致压力过分升高。为了防止这一现象,通常在低温级系统中装设一个平衡容器。
用两台单级制冷机复叠时,低温级的蒸发温度一般为-40~-80℃。一台单级制冷机与一台两级制冷机复叠时,蒸发温度可低达-110℃;若用三元(例如R22、R13和R14)复叠,蒸发温度可低达-140℃。 蒸气压缩式制冷机的主要设备包括压缩机、冷凝器、蒸发器、冷凝蒸发器和节流机构。
压缩机 制冷压缩机有往复式、离心式和螺杆式等型式。制冷压缩机的工作原理和总体结构与其他用途的压缩机基本相同,但根据制冷机的要求在结构上有如下特点:①密封要求高,不允许向内和向外泄漏。因此大、中型制冷压缩机在主轴伸出机体处均设有轴封,小型制冷压缩机则做成半封闭式或全封闭式。半封闭式压缩机通常是将机体与电动机的机壳做成一体,或将两者用法兰连接。全封闭式还只限于小型往复压缩机和滚动转子压缩机,用一个密封的钢罩壳把压缩机与电动机封闭起来,一般不进行拆修。②氟利昂能溶于润滑油中,故常在曲轴箱的油池中装有加热器。有些螺杆压缩机和滚动转子压缩机用喷油法来实现机内密封和冷却,除喷油装置外还设有高效率的油分离器。③压缩机吸入的是饱和蒸气。氨气容易带液,故往复氨压缩机设有防止液击的安全盖。④多级压缩时各级的流量不相同,故多级离心压缩机和螺杆压缩机大多设有中间补气系统,再配以省功器,借以提高制冷机的运转经济性。
冷凝器 靠环境介质带走制冷剂的热量,制冷剂在其中被冷却并冷凝成液体。冷凝器分为水冷式和空气冷却式两种。①水冷式冷凝器是应用最广的一类冷凝器,用于中、大型制冷机中。水冷式冷凝器有:壳管式,制冷剂在管外冷凝(见管壳式换热器);套管式,制冷剂在管腔中冷凝(见套管式换热器);喷淋式,制冷剂在管内冷凝(见蛇管式换热器);蒸发式,制冷剂在管内冷凝,管外用水喷淋,并有空气吹过管子表面。壳管式结构较紧凑,传热效果较好,应用较为广泛。用于氟利昂制冷机的壳管式冷凝器,因氟利昂冷凝时的放热系数较小,常在管外设有翅片,以强化传热。②空气冷却式冷凝器多用于小型氟利昂制冷机中,分为空气强迫对流式(风扇鼓风)和自然对流式两种,前者的传热效果较好。空气冷却式冷凝器均做成蛇管式,制冷剂在管内冷凝,而且在管外设有翅片。
蒸发器 依靠制冷剂的蒸发直接或间接(通过载冷剂)吸取被冷却物体的热量。蒸发器可分为:冷却液体的蒸发器,用于间接冷却;冷却空气的蒸发器,用于直接冷却。冷却液体的蒸发器用来冷却载冷剂,常用的有:管壳式,制冷剂在管外蒸发;沉浸式,制冷剂在管内蒸发;干式蒸发器等。用于氟利昂制冷机的管壳式蒸发器一般在管外也设有翅片,以强化传热。干式蒸发器的结构与管壳式相似,但制冷剂在管内蒸发,可使用光管或内翅片管,传热效果好。冷却空气的蒸发器常制成蛇管式,管外套有翅片,空气在管外强制流动,制冷剂在管内蒸发。这种蒸发器与鼓风机的组合称为空气冷却器。此外,在冷藏装置(见制冷装置)中常使用空气自由对流的蛇管式蒸发器,即冷却排管。 只用于复叠式制冷机中。它依靠高温级中制冷剂的蒸发使低温级中的制冷剂蒸气冷凝,它既是高温级的蒸发器,又是低温级的冷凝器。冷凝蒸发器有套管式、绕管式和管壳式等,均采用管内蒸发、管外冷凝的方式。
节流机构 把制冷剂液体从冷凝压力降低到蒸发压力的控制机构,它能同时控制供液量。节流机构有节流阀、浮球调节阀、热力膨胀阀、毛细管和节流孔板等。
① 节流阀:它是手动操作的控制阀门,转动手轮可改变阀的通道截面,控制供液量,常用于较大型的制冷机中。
② 浮球阀:一种自动控制阀门。它靠蒸发器或中间冷却器中制冷剂液面的变化,通过浮球和传动机构的动作改变阀门的通道截面,只用于氨制冷机中。
③ 热力膨胀阀:一种依靠蒸发器出口制冷剂蒸气的过热度来改变通道截面的自动控制阀门(图5)。热力膨胀阀装在蒸发器的进口,感温包设在蒸发器出口管上。感温包中充有感温工质(制冷剂或其他气体、液体)。当蒸发器的供液量偏小时,蒸发器出口蒸气的过热度增大,感温工质的温度和压力升高,通过顶杆将阀芯向下压,阀门开度变大,供液量增多;反之,当供液量偏大时,蒸发器出口蒸气过热度变小,阀门通道便自动变小,供液量随之减少。水推动阀门下方的调整杆,可以调整蒸气的过热度。热力膨胀阀大多用于氟利昂制冷机中。
④ 毛细管:也称节流管,通常为长0.1~2米、内径1~3毫米的细长铜管,用于小型冰箱和空气调节设备中。
⑤ 节流孔板:用于某些离心式制冷机中,分为单孔板和多孔板(几个孔板串联工作)等。孔板的流通截面不能调节,仅适用于工况较稳定的制冷机。 压缩式制冷机的主要性能指标是工作温度(冷凝温度和蒸发温度)、制冷量、功率和制冷系数。压缩式制冷机的制冷量和功率主要取决于压缩机的结构尺寸和转速,同时也随工作温度而变。表为各种压缩式制冷机的特点和应用。
2. 压缩机主轴斜盘部件都包含什么
压缩机主轴斜盘部件,包括斜盘本体,斜盘本体的一端为与其垂直的正断面,另一端为斜断面,斜盘本体的中心设置有主轴,主轴的一端延伸出斜盘本体的正断面,斜盘本体的斜断面四周设置有平整的平台面,平台面设有磁铁。所述平台面均匀设有至少两个凹槽,磁铁与凹槽的形状大小一致,磁铁固定在凹槽内,磁铁的外露表面与平台面齐平。所述平台面设有圈状凹槽,圈状凹槽内设圈状磁铁,圈状磁铁的外露表面与平台面齐平。所述磁铁的纵向截面为“T”字形,“T”字形的顶部为磁铁与平台面齐平的外露表面。所述平台面上设置有后推力轴承组件,后推力轴承组件由前推力轴承、前推力轴承芯和前L型推力片组成。本主轴斜盘部件与压缩机本体安装时,压缩机本体竖直固定放置,后推力轴承组件被磁铁吸附在斜盘的平台面,后推力轴承组件调整到合适的位置后,固定不动,主轴斜盘部件向下与其对接安装,后推力轴承组件不会掉落,位置不会发生偏差,大大提高了生产的速度,和产品安装的合格率。
3. 汽车空调压缩机的工作原理分类
根据工作原理的不同,空调压缩机可以分为定排量压缩机和变排量压缩机。 这种压缩机的工作过程可以分为4个,即压缩、排气、膨胀、吸气。曲轴旋转时,通过连杆带动活塞往复运动,由气缸内壁、气缸盖和活塞顶面构成的工作容积便会发生周期性变化,从而在制冷系统中起到压缩和输送制冷剂的作用。曲轴连杆式压缩机是第1代压缩机,它应用比较广泛,制造技术成熟,结构简单,而且对加工材料和加工工艺要求较低,造价比较低。适应性强,能适应广阔的压力范围和制冷量要求,可维修性强。
但是曲轴连杆式压缩机也有一些明显的缺点,例如无法实现较高转速,机器大而重,不容易实现轻量化。排气不连续,气流容易出现波动,而且工作时有较大的振动。
由于曲轴连杆式压缩机的上述特点,已经很少有小排量压缩机采用这种结构形式,曲轴连杆式压缩机目前大多应用在客车和卡车的大排量空调系统中。 轴向活塞式压缩机可以称为第2代压缩机,常见的有摇板式或斜板式压缩机,这是汽车空调压缩机中的主流产品。斜板式压缩机的主要部件是主轴和斜板。各气缸以压缩机主轴为中心圆周布置,活塞运动方向与压缩机的主轴平行。大多数斜板式压缩机的活塞被制成双头活塞,例如轴向6缸压缩机,则3缸在压缩机前部,另外3缸在压缩机后部。双头活塞在相对的气缸中一前一后的滑动,一端活塞在前缸中压缩制冷剂蒸气时,另一端活塞就在后缸中吸入制冷剂蒸气。各缸均配有高低压气阀,另有一根高压管,用于连接前后高压腔。斜板与压缩机主轴固定在一起,斜板的边缘装合在活塞中部的槽中,活塞槽与斜板边缘通过钢球轴承支承。当主轴旋转时,斜板也随着旋转,斜板边缘推动活塞作轴向往复运动。如果斜板转动一周,前后2个活塞各完成压缩、排气、膨胀、吸气一个循环,相当于2个气缸工作。如果是轴向6缸压缩机,缸体截面上均匀分布3个气缸和3个双头活塞,当主轴旋转一周,相当于6个气缸的作用。
斜板式压缩机比较容易实现小型化和轻量化,而且可以实现高转速工作。它的结构紧凑,效率高,性能可靠,在实现了可变排量控制之后,目前广泛应用于汽车空调。 旋转叶片式压缩机的气缸形状有圆形和椭圆形2种。在圆形气缸中,转子的主轴与气缸的圆心有一个偏心距,使转子紧贴在气缸内表面的吸、排气孔之间。在椭圆形气缸中,转子的主轴和椭圆中心重合。转子上的叶片将气缸分成几个空间,当主轴带动转子旋转一周时,这些空间的容积不断发生变化,制冷剂蒸气在这些空间内也发生体积和温度上的变化。旋转叶式压缩机没有吸气阀,因为叶片能完成吸入和压缩制冷剂的任务。如果有2个叶片,则主轴旋转一周有2次排气过程。叶片越多,压缩机的排气波动就越小。
作为第3代压缩机,由于旋转叶片式压缩机的体积和重量可以做到很小,易于在狭小的发动机舱内进行布置,加之噪声和振动小以及容积效率高等优点,在汽车空调系统中也得到了一定的应用。但是旋转叶片式压缩机对加工精度要求很高,制造成本较高。 这种压缩机可以称为第4代压缩机。涡旋压缩机结构主要分为动静式和双公转式2种。目前动静式应用最为普遍,它的工作部件主要由动涡轮与静涡轮组成,动、静涡轮的结构十分相似,都是由端板和由端板上伸出的渐开线型涡旋齿组成,两者偏心配置且相差180°,静涡轮静止不动,而动涡轮在专门的防转机构的约束下,由曲柄轴带动作偏心回转平动,即无自转,只有公转。涡旋式压缩机具有很多优点。例如压缩机体积小、重量轻,驱动动涡轮运动的偏心轴可以高速旋转。因为没有了吸气阀和排气阀,涡旋压缩机运转可靠,而且容易实现变转速运动和变排量技术。多个压缩腔同时工作,相邻压缩腔之间的气体压差小,气体泄漏量少,容积效率高。涡旋式压缩机以其结构紧凑、高效节能、微振低噪以及工作可靠性等优点,在小型制冷领域获得越来越广泛的应用,也因此成为压缩机技术发展的主要方向之一。
4. 冷库的压缩机组全封闭跟半封闭有什么区别
全封闭跟半封闭是根据外部结构形式来分类的,除此外还有种开启式。
全封闭式压缩机和电动机共同装在一个封闭壳内,上、下机壳接合处焊缝的为全封闭式压缩机。
全封闭式压缩机与所配用的电动机公用一根主轴装在机壳内,因而可不用轴封装置,减少泄漏可能性。
优点:压缩机和电动机装在一个由熔焊或钎焊焊死的外壳内,共用一根主轴,这样既取消了轴封装置,又大大减轻和缩小了整个压缩机的尺寸和重量。露在机壳外表的只焊有吸排气管、工艺管及其他(如喷淋管)必要的管道、输入电源接线柱和压缩机支架等。
缺点是不容易打开修理:由于整个压缩机电动机组是装在一个不能拆开的密封机壳中,不易打开进行内部修理,因而要求这类压缩机的使用可靠性高,寿命长,对整个制冷系统的安装要求也高,这种全封闭结构形式一般用于大批量生产的小冷量制冷压缩机中。
目前占领市场的主要是后者中的半封闭活塞式冷库压缩机。
半封闭活塞式压缩机一般采用四极电动机驱动,其额定功率一般在60—600KW之间。气缸数为2--8个,最多12个。半封闭式压缩机多采用气缸体—曲柄箱整体结构形式,其电机外壳往往是气缸体曲柄箱的延伸部分,以减少连接面和保证压缩机级电动机之间的同心度;在较大的机型中,为铸造和加工方便起见才制成可分的,在连接处由法兰连接起来。曲柄箱和电机室两空间由孔相通,以利润滑油的回流。半封闭压缩机的主轴是曲柄轴或偏心轴的结构形式;内置电动机的冷却有的用空气或水,有的用吸入低温工质蒸气。而对于小功率范围内的半封闭压缩机,其润滑往往采用离心供油方式。这种润滑方式结构简单,但当压缩机功率增大,供油不足时,改为压力润滑方式。
优点:1、能适应较广阔的压力范围和制冷量要求;2、热效率较高,单位耗电量较少,特别是气阀的存在使偏离设计工况运行时更为明显;3、对材料要求低,多用普通钢铁材料,加工比较容易,造价比较低廉;4、技术上较为成熟,生产使用上积累了丰富的经验;5、装置系统比较简单。
半封闭活塞式压缩机的上述优点使它在各种制冷空调装置,特别在中、小冷量范围内,成为制冷机中应用最广、生产批量最大的一种机型。与此同时,半封闭活塞式压缩机既保持了开启式压缩机易于拆卸、修理的优点,同时又取消了轴封装置,改善了密封情况,机组更加结构紧凑,噪声低,当用吸入的低温工质冷却电动机时,有利于机器的小型轻量化。目前采用R22用于中、低温的半封闭活塞式制冷压缩机广泛应用于冷库、冷藏运输、冷冻加工、陈列柜和厨房冰箱等领域。
5. 简述压缩式制冷机的组成及其工作原理
经压缩机压缩的气体先在冷凝器中被冷却,向冷却水(或空气)放出热量,然后流经回热器被返流气体进一步冷却,并进入膨胀机绝热膨胀,压缩气体的压力和温度同时下降。气体在膨胀机中膨胀时对外作功,成为压缩机输入功的一部分。
同时膨胀后的气体进入冷箱,吸取被冷却物体的热量,即达到制冷的目的。此后,气体返流经过回热器,同压缩气体进行热交换后又进入压缩机中被压缩。
(5)主轴压缩机组扩展阅读:
一、结构特点:
1、要求高,不允许向内和向外泄漏。因此大、中型制冷压缩机在主轴伸出机体处均设有轴封,小型制冷压缩机则做成半封闭式或全封闭式。
半封闭式压缩机通常是将机体与电动机的机壳做成一体,或将两者用法兰连接。全封闭式还只限于小型往复压缩机和滚动转子压缩机,用一个密封的钢罩壳把压缩机与电动机封闭起来,一般不进行拆修。
2、氟利昂能溶于润滑油中,故常在曲轴箱的油池中装有加热器。有些螺杆压缩机和滚动转子压缩机用喷油法来实现机内密封和冷却,除喷油装置外还设有高效率的油分离器。
3、压缩机吸入的是饱和蒸气。氨气容易带液,故往复氨压缩机设有防止液击的安全盖。
4、多级压缩时各级的流量不相同,故多级离心压缩机和螺杆压缩机大多设有中间补气系统,再配以省功器,借以提高制冷机的运转经济性。
二、制冷机节能方法:
1、制冷机节能原则
提高蒸发温度,降低冷凝温度。在满足设备安全和生产需求的前提下,尽量提高蒸发温度和降低冷凝温度。为此加大了冷却塔的改造,以保证冷却水效能。
2、防止和减少管道结垢
以提高冷凝器和蒸发器的换热效率补充水如果水处理做的不好,碳酸氢钙和碳酸氢镁受热产生的碳酸钙和碳酸镁会沉积在管道上。使导热性能下降,影响冷凝器和蒸发器的换热效率,并使设备运行电费大幅度上升。此时除了采用水处理技术外,还可以利用管道定期自动清洗设备进行管道清洗。
3、调整制冷机设备合理的运行负载
在保证设备安全运行的情况下,制冷主机运行在70%-80%负载比运行在100%负载时,单位冷量的功耗更小。运用此方式开机要结合水泵、冷却塔的运行情况综合考虑。
6. 压缩机的性能参数有哪些
压缩机的基本性能参数
一、实际输气量(简称输气量)
在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是
(4-1)
二、容积效率
压缩机的容积效率是实际输气量与理论输气量之比值
(4-2)
它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。
三、制冷量
制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。
(4-3)
式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为;
-制冷剂在给定制冷工况下的单位容积制冷量,单位为。
为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。
四、排热量
排热量是压缩机的 制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。
图4-1 实际制冷循环
从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的排热量为:
(4-4)
从图4-1b的压缩机的能量平衡关系图上不难发现
(4-5)
上两式中
-压缩机进口处的工质比焓;
-压缩机出口处的工质比焓;
-压缩机的输入功率;
-压缩机向环境的散热量。
表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。
五、指示功率和指示效率
单位时间内实际循环所消耗的指示功就是压缩机的指示功率Pi,单位为kw,它等于
(4-6)
式中 Wi——每一气缸或工作容积的实际循环指示功,单位为J。
制冷压缩机的指示效率hi是指压缩1kg工质所需的等熵循环理论功与实际循环指示功之比。它是用以评价压缩机气缸或工作容积内部热力过程完成的完善程度。
六 轴功率、轴效率和机械效率
由原动机传到压缩机主轴上的功率称为轴功率Pe,单位为kW,它的一部分,即指示功率Pi直接用于完成压缩机的工作循环,另一部分,即摩擦功率Pm,单位为kW,用于克服压缩机中各运动部件的摩擦阻力和驱动附属的设备,如润滑用液压泵等。
七 电功率和电效率
输入电动机的功率就是压缩机所消耗的电功率Pel,单位为kW。电效率*是等熵压缩理论功率与电功率之比,它是用以评定利用电动机输入功率的完善程度。
7. 制冷压缩机的种类与区别
根据工作原理的不同,制冷压缩机可分为容积型和速度型两大类。
容积型:有活塞式制冷压缩机、滑片式制冷压缩机和螺杆式制冷压缩机。
速度型:有离心式制冷压缩机。
所有的压缩机都需要用电动机带动。在冷库的制冷装置中,较多的以活塞式制冷压缩机为主要机型。
8. 什么是压缩机
压缩机(compressor),输送气体和提高气体压力的一种从动的流体机械。是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝→膨胀→蒸发 ( 吸热 ) 的制冷循环。
简介
压缩机分活塞压缩机与螺旋压缩机两类。 活塞压缩机一般由壳体、电动机、缸体、活塞、控制设备 ( 启动器和热保护器 ) 及冷却系统组成。冷却方式有油冷和自然冷却两种。 一般家用冰箱和空调器的压缩机是以单相交流电作为电源,它们的结构原理基本相同。两者使用的制冷剂有所不同。
压缩机
编辑本段压缩机生产制造
压缩机是以流水线方式生产的。在机械加工车间 ( 包括铸造 ) 制造出缸体、活塞 ( 转轴 ) 、阀片、连杆、曲轴、端盖等零部件;在电机车间组装出转子、定子;在冲压车间制造出壳体等。然后在总装车间进行装配、焊接、清洗烘干,最后经检验合格包装出厂。大多数压缩机制造厂不生产启动器和热保护器,而是根据需要从市场采购。编辑本段压缩机的节能改造方法
压缩机在启动时,电机的电流会比额定高5-6倍的,不但会影响电机的使用寿命而且消耗较多的电量.系统 在设计时在电机选型上会留有一定的余量,电机的速度是固定不变,但在实际使用过程中,有时要以较低或者较高的速度运行,因此进行变频改造是非常有必要的。变频器可实现电机软启动、通过改变设备输入电压频率达到节能调速的目的,而且能给设备提供过流、过压、过载等保护功能。国内变频器做得较好厂家的有三晶、英威腾等。
编辑本段种类
压缩机按其原理可分为容积型压缩机与速度型压缩机。容积型又分为 往复式压缩机、回转式压缩机;速度型压缩机又可发为:轴流式压缩机、离心式压缩机。 目前家用冰箱和空调器压缩机都是容积式,其中又可分为往复式和旋转式。往复式压缩机使用的是活塞、曲柄、连杆机构或活塞、曲柄、滑管机构,旋转式使用的目前多是滚动转子压缩机。在商用空调上,又多是离心式、涡旋式、螺杆式。 按应用范围又可分为低背压式、中背压式、高背压式。低背压式 ( 蒸发温度 -35 ~ -15 ℃ ) ,一般用于家用电冰箱、食品冷冻箱等。中背压式 ( 蒸发温度 -20 ~ 0 ℃ ) ,一般用于冷饮柜、牛奶冷藏箱等。高背压式 ( 蒸发温度 -5 ~ 15 ℃ ) ,一般用于房间空气调节器、除湿机、热泵等。编辑本段规格、质量
压缩机的规格是按输入功率来划分的。一般每种规格间相差 50W 左右。另外,也有按气缸容积划分的。
压缩机主要性能指标
输入、输出功率,性能系数,制冷量,启动电流、运转电流、额定电压、频率,气缸容积,噪音等。衡量一种压缩机的性能,主要从重量、效率和噪音三个方面的比较。 按照我国标准,其安全性能检验是依据 GB4706.17-2004规定项目进行的。其中主要项目是电气强度、泄漏电流、堵转,以及过载运行试验等。 对空调器压缩机的性能检验,依据 GB5773-2004 中的规定进行。 另外,在产品定型及生产中发生可能影响产品性能的重大变化时,连续生产满一年或时隔一年以上再生产时,以及出厂检验结果与型式试验有较大差异时,均必须进行型式试验。
包装及储运
压缩机的包装和运输可按合同规定办理。大批量进口的压缩机,一般是装入纸箱内再以集装箱装运。压缩机在包装箱内应固定牢靠,并有防潮防震措施。储运中不许倒置,并储存在通风良好的仓库中,相对湿度不能超过 80% ,不能有腐蚀性气体存在。
注意事项
压缩机只有在使用时,才允许拔出密封橡胶堵头。如在储运中发现堵头脱落或松动,应及时检查处理后再行保存。 电冰箱压缩机和空调器压缩机均必须进行CCC认证后,才能销售。
主要进口国家
在国内压缩机供应不足的情况下,中国每年还需适量进口。 主要贸易国家是德国、美国、意大利、日本、丹麦、巴西、韩国等。 近年来,国内压缩机厂家通过技术引进和设备改造,国产压缩机的质量、产量都大幅度提高。编辑本段负荷运转要求
压缩机首次负荷运转是在空车运转和吹洗完成后进行的。压缩机应按以下要求进行负荷运转:
压缩机
1、开车后逐渐关闭放空伐或油水吹除伐,在压缩机的1/4额定压力下运转1小时;在1/2额定压力下运转4-8小时。 2、压缩机在最小压力下运转,无异常现象后,方得将压力逐渐升高; 3、对于大型高压压缩机,在公称压力下的运转时间不得少于24小时; 4、运转过程中,检查下列项目: (1)润滑油的压力、温度和供油情况。油压在送入分配管系之前不得低于1公斤/厘米2。曲轴箱或机身内润滑油油湿应为:有十字头的压缩机不得超过60℃。无十字头的不得超过70℃。 (2)压缩机运转平稳,各运动部件声音应正常。 (3)测量进、出口水温和检查冷却水供应情况,冷却水不允许断续地流和有气泡及堵塞等现象。冷却水排水温度不得超过40℃。 (4)各连接法兰部分,轴封,进、排气伐、气缸盖和水套等,不得漏气、漏油、漏水。
压缩机
(5)进、排气伐的工作应正常,安全伐灵敏。 (6)各连接部分不得有松动现象。 (7)测量各级排气温度和压力数值应符合各技术条件的规定。 (8)电动机发热情况及电流值应符合规定。 5、运转完毕后,拆检下列项目: (1)拆卸各级气伐,各级气缸前盖,检查气缸镜面摩擦情况,如有摩擦痕迹时应找出原因。 (2)检查活塞杆表面摩擦情况,不应有磨痕及拉道现象。 (3)拆卸各级气伐,检查伐片与伐体的贴合情况,伐片如有裂纹时,以备件换之。 (4)检查十字滑板、与机身导轨摩擦面的摩擦情况。 (5)拆卸连杆大头瓦、十字头销,检查摩擦面的摩擦情况。 6、更换机身内润滑油。压缩机初次运转后;由于机件各处进行靡合,和润滑油的清洗作用,有大量细碎的金属粉末进入润滑油,因此,机器经过24小时的工作后即应更换全部润滑油。运转200小时后,再次换新油一次。更换两次后,按定期维修要求换油。 为了使靡合均匀,初次运转时必须使各处有充分的润滑油。编辑本段常见故障及其原因和解决措施
排气量不足
排气量不足是压缩机最容易出现的故障之一,它的出现主要是由下述几个原因导致: 1、进气滤清器的故障:积垢堵塞,使排气量减少;吸气管太长,管径太小,致使吸气阻力增大影响了气量,要定期清洗滤清器。 2、压缩机转速降低使排气量降低:空气压缩机使用不当,因空气压缩机的排气量是按一定的海拔高度、
压缩机
吸气温度和湿度设计的,当把它使用在超过上述标准的高原上时,吸气压力降低等,排气量必然降低。 3、气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨损时,需及时更换易损件,如活塞环等。属于安装不正确,间隙留得不合适时,应按图纸给予纠正,如无图纸时,可取经验资料,对于活塞与气缸之间沿圆周的间隙,如为铸铁活塞时,间隙值为气缸直径的0.06/100~0.09/100;对于铝合金活塞,间隙为气径直径的0.12/100~0.18/100;钢活塞可取铝合金活塞的较小值。 4、填料函不严,产生漏气使气量降低。其原因首先是填料函本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气;一般在填料函处加注润滑油,它能起到润滑、密封、冷却的作用。 5、压缩机吸、排气阀的故障对排气量的影响。气阀的阀座与阀片间掉入金属碎片或其它杂物,导致关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化 ;这种问题的出现可能是由于一是制造质量问题,如阀片翘曲等,第二是由于阀座与阀片磨损严重而形成漏气。 6、气阀弹簧力与气体力匹配的不好。弹力过强则使阀片开启迟缓,弹力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到功率的增加,以及气阀阀片、弹簧的寿命。同时,也会影响到气体压力和温度的变化。 7、压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧也不行,会使阀罩变形、损坏,一般压紧力可用下式计算:p=kπ/4 D2P2,D为阀腔直径,P2为最大气体压力,K为大于1的值,一般取1.5~2.5,低压时K=1.5~2.0,高压时K=1.5~2.5.这样取K,实践证明是好的。气阀有了故障,阀盖必然发热,同时压力也不正常。
排气温度不正常
排气温度不正常是指其高于设计值。从理论上进,影响排气温度增高的因素有:进气温度、压力比、以及压缩指数(对于空气压缩指数K=1.4)。实际情况影响到吸气温度高的因素如:中间冷却效率低,或者中冷器内水垢结多影响到换热,则后面级的吸气温度必然要高,排气温度也会高。另外,气阀漏气,活塞环漏气,不仅影响到排气温度升高,而且也会使级间压力变化,只要压力比高于正常值就会使排气温度升高。此外,水冷式机器,缺水或水量不足均会使排气温度升高。
压力不正常以及排气压力降低
压缩机排出的气量在额定压力下不能满足使用者的流量要求,则排气压力必然要降低。此时,只好另换一台排气压力相同,而排气量大的机器。影响级间压力不正常的主要原因是气阀漏气或活塞环磨损后漏气,故应从这些方面去找原因和采取措施。
不正常的响声
压缩机若某些部件发生故障时,将会发出异常的响声,一般来讲,操作人员是可以判别出异常的响声的。活塞与缸盖间隙过小,直接撞击;活塞杆与活塞连接螺帽松动或脱扣;活塞端面丝堵桧,活塞向上串动碰撞气缸盖;气缸中掉入金属碎片以及气缸中积聚水份等均可在气缸内发出敲击声。曲轴箱内曲轴瓦螺栓、螺帽、连杆螺栓、十字头螺栓松动、脱扣、折断等,轴径磨损严重间隙增大,十字头销与衬套配合间隙过大或磨损严重等等均可在曲轴箱内发出撞击声。排气阀片折断,阀弹簧松软或损坏,负荷调节器调得不当等等均可在阀腔内发出敲击声。由此去找故障和采取措施。
过热故障
在曲轴和轴承、十字头与滑板、填料与活塞杆等摩擦处,温度超过规定的数值称之为过热。过热所带来的后果:一个是加快磨擦副间的磨损,二是过热量的热能不断积聚直致烧毁磨擦面而造成机器重大的事故。造成轴承过热的原因主要有:轴承与轴颈贴合不均匀或接触面积过小;轴承偏斜曲轴弯曲,润滑油粘度太小,油路堵塞,油泵有故障造成断油等;安装时没有找平,没有找好间隙,主轴与电机轴没有找正,两轴有倾斜等。编辑本段环境保护对压缩机提出的要求
概述
随着工业的发展伴之产生的对地球的污染越来越严重,环境保护已成为全球关注的重要问题,而防止大气臭氧层的破坏和全球气候变暖,更是引起世界各国的普遍重视,并使国际上政府间达到共识,签署了有关协议。 而在制冷与空调领域中CFCS和HCFCS对大气臭氧层的破坏以及能源消耗造成的全球变暖,都是压缩机
压缩机
在设计时应高度重视的问题。 众所周知,制冷剂的选用是影响压缩机设计的诸多因素中应予高度重视的一个。 为了开发使用替代制冷剂的新压缩机,设计者首先遇到两个问题: 其一,压缩机必须把其工作容积的尺寸重新划定,以适应不同流量的压力的要求; 其二,压缩机中与制冷剂接触的各种材料之间的相容性,如合成橡胶和润滑油,必须给予解决。 在过去的历史中,有五十余种物质曾被用作制冷剂。二次大战后,除了在大冷量范围内还用氨以外,几乎所有制冷空调领域中都被卤代烃CFCS 和HCFCS 所主宰,1974年蒙特利尔协议书中所规定的CFCS替代已在工业化国家中实现,而HCFCS的替代计划将要在2020年完成;而对发展中国家,则将分别在2010年和2040年停用。但是,在某些发达国家中则准备提前实现。图6表示了欧洲原来常用的CFC-11、CFC-12、HCFC-22和R502的应用领域及其可能采用的替代剂(箭头横线之下)。
CFC-11
CFC-11是一种低压制冷剂,主要用于离心式冷水机组中,其过渡替代剂为HCFC-123。另外,HFC-245ca或HFC-245fa也属低压制冷剂,但它具有可燃性,故而对其减燃方法和毒性尚待研究,而且它的使用不及CFC-11 和HCFC-123效率高。因而,许多企业已改用HFC-134a于离心式冷水机组中。
CFC-12
CFC-12由于它的应用面广和在汽车空调中的泄漏问题,因而是首先考虑要替代的对象。在家用电冰箱和汽车空调中可用HFC-134a来替代。用于中温和高温范围里,HFC-134a具有和CFC-12相近的制冷量和效率。但在低于-23℃的工况下,则因其制冷量和效率都比CFC-12低而失去其吸引力。虽然HFC-134a的臭氧消耗潜能ODP值为零,但其全球变暖潜能GWP值高达1300(以CO2的GWP值为基准的比较值),从长远考虑,这也会影响其发展使用。
HCFC-22
HCFC-22已广泛用于商业制冷及商业和住宅空调及热泵中,其ODP值远小于CFC-11和CFC-12的,仅为0.055。但其GWP值却相当高,约为1700。正是由于这些原因,已经在欧洲一些国家,如德国,正在被迅速淘汰。已经有好几种混合制冷剂作为HCFC-22的替代物。美国制冷协会在其制冷剂替代物的评估计划(AREP)中已推荐了4种:HFC-134a、R407C、R410A和R410B。但是,其中HFC-134a比之其它三种,其制冷量和压力都较小,用它作制冷剂需要对系统作较大的重新设计,故由它来替代HFCF-22的可能性似乎最小,但用在较大的冷水机组中的可能性还是存在的。非共沸工质R407C很可能是一种对现有机器的“可用”(drop in)替代剂,因它与HCFC-22最相近,替代后对系统的设备只需作最小的改动,且采用酸类润滑油来取代矿物油,还应注意适应工质的较大温度滑移(可达5~7℃)。近共沸工质R410A和R410B是两种相同的HFCS的混合物,不同的仅是混合比例而已。R410A适用于分体式小型空调器,但其蒸发压力约为HCFC-22的1.5倍,因此,用这种工质的系统需要全部重新设计,故仅用于新的制冷空调系统中。经过优化设计的这种系统可使其效率提高5%。
R502
R502曾广泛用于低温的制冷系统里。AREP推荐了两种可能的替代物:R404A和R507。R404A具有与R502相近的制冷量和效率,但在采用时尤需对系统的部件作较多的试验,特别是压缩机。R507的混合组份中有一种成分起着阻燃的作用,它与R502的性能相似,但在美国还在继续进行毒性试验;可是在欧洲,它已被应用于超市冷冻设备中。
天然制冷剂
在自然界中大量存在的“天然制冷剂”,例如氨、碳氢化合物、二氧化碳等。氨的应用已有百余年的历史,至今还有许多国家用在大型工业制冷、食品冷冻冷藏中。但其易燃、易爆、有毒和具有强烈的刺激味等限制了它的应用范围。 碳氢化合物具有十分好的热力性质和传热特性,它和所有机械材料和油类完全相容。而实际上,这种工质早就在石油化学工业的大型制冷系统中使用。影响这类制冷剂大量推广的阻力来自它的可燃性。在欧洲,这种制冷剂已开始进入家用制冷设备的市场,如德国已在产品中有90%的覆盖率。我国电冰箱行业亦已有使用异丁烷的R600a的产品。 可燃性制冷剂的应用范围和前景是一个十分重要的问题,它的普遍解决尚需有一个国际上比较统一的认识,因为这影响到制冷空调设备的国际贸易。但是,要做到这一步尚等更多的试验研究和各国对此问题所采取的政策,看来还需要相当的时间方见端倪。 由于传统的适用于CFC-12等CFCS工质的矿物油和合成油与新工质R134a等HFCS的相溶性差,人们遂研究开发出新型的极性润滑油,该润滑油的基体有的是多元酯POE(称之为酯类油),有的是聚乙二醇PAG(称之为乙二醇油),它们与HFCS新工质有良好的相溶性,这样才能避免在换热器中聚集润滑油以及保证油能顺利回流到压缩机中去。编辑本段压缩机安装
安装场所之选定最为工作人员所忽视。往往压缩机购置后就随便找个位置,配管后立即使用,根本没有事前的规划。殊不知如此草率的结果,却形成日后压缩机故障维修困难及压缩空气品质不良等的原因。所以选择良好的安装场所乃是正确使用空压系统的先决条件。 1.须宽阔采光良好的场所,以利操作与检修。 2.空气之相对湿度宜低,灰尘少,空气清净且通风良好。 3.环境温度须低于40℃,因环境温度越高,则压缩机之输出空气量愈少。 4.如果工厂环境较差,灰尘多,须加装前置过滤设备。 5.预留通路,具备条件者可装设天车,以利维修保养。 6.预留保养空间,压缩机与墙之间至少须有70公分以上距离。 7.压缩机离顶端空间距离至少一米以上。 二.配管,基础及冷却系统注意事项 1.空气管路之配管注意事项 (1)主管路配管时,管路须有1°~2°之倾斜度,以利管路中的冷凝水排出。 (2)配管管路之压力降不得超过压缩机设定压力之5%,故配管时最好选用较大的管径。 (3)支线管路必须从主管路的顶端接出,避免管路中的凝结水下流至用气设备中,压缩机空气出口管路最好应有单向阀。 (4)几台压缩机串联安装,须在主管路末端加装球阀或自动排水阀,以利冷凝水排放。 (5)主管路不要任意缩小,如果必须缩小或放大管路时须使用渐缩管,否则在接头处会有混流情况发生,导致大的压力损失,也影响管路的使用寿命。 (6)压缩机之后如果有储气罐及干燥机等净化缓冲设施,理想之配管应是压缩机+储气罐+前过滤器+干燥机+后过滤器+精过滤器。如此储气罐可将部分的冷凝水滤除,同时储气罐亦有降低气体排气温度之功能。较低温度且含水量较少之空气再进入干燥机,可减轻干燥机或过滤器之负荷。 (7)若系统之空气用量很大且时间很短,瞬时用气量变化很大,宜加装一储气罐作为缓冲之用(其容量应大于或等于最大瞬时气量的20%),这样可以减少压缩机组频繁加载或卸荷的次数,减少控制元件动作次数,对保持压缩机的运行可靠性有很大的益处。一般情况下,可选择容量为排气量20%的储气罐。 (8)系统压力在1.5MPa以下的压缩空气,其输送管内之流速须在15m/sec以下,以避免过大的压力降。 (9)管路中尽量减少使用弯头及各类阀门,以减少压力损失。 (10)理想的配管是主管线环绕整个厂房,如此在任何位置均可获得双方面的压缩空气。如在某支线用气量突然大增时,可以减少压力降。且在环状主干线上配置适当之阀门,以便检修切断之用。 2.基础 (1)基础应建立在硬质的地坪上,在安装前须将基础平面整水平,以避免压缩机产生震动而引起噪音。 (2)压缩机如装在楼上,须做好防振处理,以防止振动传至楼下,或产生共振,对压缩机及大楼本身均有安全上的隐患。 (3)螺杆式压缩机所产生的振动很小,故不需做固定基础。但其所放置之地面须平坦,且地下不可为软性土壤。压缩机底部最好铺上软垫或防震垫,以防止振动及噪音。 3.冷却系统 (1)当您选用风冷式压缩机时,要考虑其通风环境。不得将压缩机安放在高温设备附近,以避免压缩机吸入高温大气导致排气温度过高而影响机组的正常运行。 (2)当使用条件限制压缩机安装在较小的密闭空间内时,须加装抽、排风设备,以便空气流通循环,其抽、排风设备的能力须大于压缩机冷却风扇的排风量,而且抽风进口位置要适合压缩机热排风出口位置。 三。压缩机的安装应遵循当地的有关法律法规,并严袼遵守以下规定: 1、压缩机应采用承重能力大于机组重量的起重设备进行吊运,吊运速度、加速度应限制在许可的范围之内。 2、尽量把压缩机安装在凉爽、干净、通风良好的地方,保证压缩机吸入的空气洁净及水分含量最小。 3、压缩机吸入的空气不允许含有可燃气体及腐蚀性气体,以免可能引起爆炸或内部锈蚀。 4、风冷型机器最好应有排风扇或导风管将热风导出室外,避免热|考试|大|风循环到进风口。 5、压缩机污水、废油的排放应遵守当地环保部门的规定。 6、本机器使用为三相交流电源380V、50Hz,引导压缩机的供电线必须与其功率匹配并安装空气开关、熔断丝等安全装置,为确保电器设备的可靠安全,必须可靠接地。 四。调试和运行(特别注意!) 1、新机调试,必须由本公司指定或认可的调试人员进行; 2、开机前应确认机组内无人,并检查是否有遗留物品和工具,关上机组门;开机时应先通知机组周围人员注意安全; 3、试运转时,严格检查压缩机的运转方向,当发现反转应立即停机,切断电源,把三相线任何两根对调再重新开机,否则会损坏压缩机(每次工厂电源检修须注意!) 4、压缩机不能在高于铭牌规定的排气压力下工作,否则会导致电机过载而烧坏; 5、当压缩机处于远程控制时,机器随时可能启动,应挂牌提醒; 6、当压缩机发生故障或有不安全因素存在时,切勿强行开机,此时应切断电源,并作出显着标记。 五。维护维修 压缩机的维护维修必须在有资格人员的指导下进行 1、压缩空气和电器都具有危险性,检修或维护保养时应确认电源已被切断,并在电源处挂“检修”或“禁止开闸”等警告标志,以防他人合闸送电造成伤害; 2、停机维护时必须等待整部压缩机冷却后及系统压缩空气安全释放,且维护人员尽可能避开压缩机系统中的任何排气口,关闭相应隔离阀; 3、清洗机组零部件时,应采用无腐蚀性安全溶剂,严禁使用易燃易爆及易挥发清洗剂; 4、压缩机运行一段时间后,须定期检验安全阀等保护系统,确保其灵敏可靠,一般每年检验一次; 5、压缩机的零配件必须是正厂提供,其螺杆油必须为本公司指定螺杆压缩机专用油,并且两种品|考试|大|牌的油严禁混用,否则会引起系统集焦造成重大事故。
9. 离心式压缩机的结构和原理
离心式压缩机的工作原理与结构 1. 工作原理离心式制冷压缩机有单级、双级和多级等多种结构型式。单级压缩机主要由吸气室、叶轮、扩压器、蜗壳等组成,如图6-1所示。对于多级压缩机,还设有弯道和回流器等部件。一个工作叶轮和与其相配合的固定元件(如吸气室、扩压器、弯道、回流器或蜗壳等)就组成压缩机的一个级。多级离心式制冷压缩机的主轴上设置着几个叶轮串联工作,以达到较高的压力比。多级离心式制冷压缩机的中间级如图6-2所示。为了节省压缩功耗和不使排气温度过高,级数较多的离心式制冷压缩机中可分为几段,每段包括一到几级。低压段的排气需经中间冷却后才输往高压段。 1—进口可调导流叶片 2—吸气室 1—叶轮 2—扩压器 3—叶轮 4—蜗壳 5—扩压器 6—主轴 3—弯道 4—回流器图6-1所示的单级离心式制冷压缩机的工作原理如下:压缩机叶轮3旋转时,制冷剂气体由吸气室2通过进口可调导流叶片1进入叶轮流道,在叶轮叶片的推动下气体随着叶轮一起旋转。由于离心力的作用,气体沿着叶轮流道径向流动并离开叶轮,同时,叶轮进口处形成低压,气体由吸气管不断吸入。在此过程中,叶轮对气体做功,使其动能和压力能增加,气体的压力和流速得到提高。接着,气体以高速进入截面逐渐扩大的扩压器5和蜗壳4,流速逐渐下降,大部分气体动能转变为压力能,压力进一步提高,然后再引出压缩机外。对于多级离心式制冷压缩机,为了使制冷剂气体压力继续提高,则利用弯道和回流器再将气体引入下一级叶轮进行压缩,如图6-2所示。因压缩机的工作原理不同,离心式制冷压缩机与往复活塞式制冷压缩机相比,具有以下特点:①在相同制冷量时,其外形尺寸小、重量轻、占地面积小。相同的制冷工况及制冷量,活塞式制冷压缩机比离心式制冷压缩机(包括齿轮增速器)重5~8倍,占地面积多一倍左右。②无往复运动部件,动平衡特性好,振动小,基础要求简单。目前对中小型组装式机组,压缩机可直接装在单筒式的蒸发�0�6冷凝器上,无需另外设计基础,安装方便。③磨损部件少,连续运行周期长,维修费用低,使用寿命长。④润滑油与制冷剂基本上不接触,从而提高了蒸发器和冷凝器的传热性能。⑤易于实现多级压缩和节流,达到同一台制冷机多种蒸发温度的操作运行。⑥能够经济地进行无级调节。可以利用进口导流叶片自动进行能量调节,调节范围和节能效果较好。⑦对大型制冷机,若用经济性高的工业汽轮机直接带动,实现变转速调节,节能效果更好。尤其对有废热蒸汽的工业企业,还能实现能量回收。⑧转速较高,用电动机驱动的一般需要设置增速器。而且,对轴端密封要求高,这些均增加了制造上的困难和结构上的复杂性。⑨当冷凝压力较高,或制冷负荷太低时,压缩机组会发生喘振而不能正常工作。⑩制冷量较小时,效率较低。目前所使用的离心式制冷机组大致可以分成两大类:一类为冷水机组,其蒸发温度在-5℃以上,大多用于大型中央空调或制取5℃以上冷水或略低于0℃盐水的工业过程用场合;另一类是低温机组,其蒸发温度为-5~-40℃,多用于制冷量较大的化工工艺流程。另外在啤酒工业、人造干冰场、冷冻土壤、低温试验室和冷、温水同时供应的热泵系统等也可使用离心式制冷机组。离心式制冷压缩机通常用于制冷量较大的场合,在350~7000kW内采用封闭离心式制冷压缩机,在7000~35000kW范围内多采用开启离心式制冷压缩机。 2. 主要零部件的结构与作用由于使用场合的蒸发温度、制冷剂的不同,离心式制冷压缩机的缸数,段数和级数相差很大,总体结构上也有差异,但其基本组成零部件不会改变。现将其主要零部件的结构与作用简述如下。(1)吸气室 吸气室的作用是将从蒸发器或级间冷却器来的气体,均匀地引导至叶轮的进口。为减少气流的扰动和分离损失,吸气室沿气体流动方向的截面一般做成渐缩形,使气流略有加速。吸气室的结构比较简单,有轴向进气和径向进气两种形式,如图6-3所示。对单级悬臂压缩机,压缩机放在蒸发器和冷凝器之上的组装式空调机组中,常用径向进气肘管式吸气室(图6-3b)。但由于叶轮的吸入口为轴向的,径向进气的吸气室需设置导流弯道,为了使气流在转弯后能均匀地流入叶轮,吸气室转弯处有时还加有导流板。图中c所示的吸气室常用于具有双支承轴承,而且第一级叶轮有贯穿轴时的多级压缩机中。 a)轴向进气吸气室 b)径向进气肘管式吸气室 c)径向进气半蜗壳式吸气室(2)进口导流叶片 在压缩机第一级叶轮进口前的机壳上安装进口导流叶片可用来调节制冷量。当导流叶片旋转时,改变了进入叶轮的气流流动方向和气体流量的大小。转动导叶时可采用杠杆式或钢丝绳式调节机构。杠杆式如图6-4所示,进口导叶实际上是一个由若 1—小齿轮 2—齿圈 3—转动叶片 4—伺服电动机 5—波纹管 6—连杆 7—杠杆 8—手轮 1—导叶 2—从动齿轮 3—钢丝绳 4—过渡轮 5—主动齿轮干可转动叶片3组成的菊形阀,每个叶片根部均有一个小齿轮1,由大齿圈2带动,大齿圈是通过杠杆7和连杆6由伺服电动机4传动,也可用手轮8进行操作。图6-5为钢丝绳传动形式,由一个主动齿轮5通过钢丝绳3带动六个从动齿轮2转动,从而带动七个导叶1开启。为了使钢丝绳在固定轨道上运动,防止它从主动齿轮和从动齿轮上滑出,又安装有七个过渡轮4,主动齿轮根据制冷机组的调节信号,由导叶调节执行机构带动链式执行机构转动主动齿轮。进口导叶的材料为铸铜或铸铝,叶片具有机翼形与对称机翼形的叶形剖面,由人工修磨选配。进口导叶转轴上配有铜衬套,转轴与衬套间以及各连接部位应注入少许润滑剂,以保证机构转动灵活。(3)叶轮 叶轮也称工作轮,是压缩机中对气体做功的惟一部件。叶轮随主轴高速旋转后,利用其叶片对气体做功,气体由于受旋转离心力的作用以及在叶轮内的扩压流动,使气体通过叶轮后的压力和速度得到提高。叶轮按结构型式分为闭式、半开式和开式三种,通常采用闭式和半开式两种,如图6-6所示。闭式叶轮由轮盖、叶片和轮盘组成,空调用制冷压缩机大多采用闭式。半开式叶轮不设轮盖,一侧敞开,仅有叶片和轮盘,用于单级压力比较大的场合。有轮盖时,可减少内漏气损失,提高效率,但在叶轮旋转时,轮盖的应力较大,因此叶轮的圆周速度不能太大,限制了单级压力比的提高。半开式叶轮由于没有轮盖,适宜于承受离心惯性力,因而对叶轮强度有利,使叶轮圆周速度可以较高。钢制半开式叶轮圆周速度目前可达450~540m/s,单级压力比可达6.5。 a) 闭式 b)半开式离心式制冷压缩机的叶轮的叶片按形状可分为单圆弧、双圆弧、直叶片和三元叶片。空调用压缩机的单级叶轮多采用形状既弯曲又扭曲的三元叶片,加工比较复杂,精度要求高。当使用氟利昂制冷剂时,通常用铸铝叶轮,可降低加工要求。(4)扩压器 气体从叶轮流出时有很高的流动速度,一般可达200~300m/s,占叶轮对气体做功的很大比例。为了将这部分动能充分地转变为压力能,同时为了使气体在进入下一级时有较低的合理的流动速度,在叶轮后面设置了扩压器,如图6-2所示。扩压器通常是由两个和叶轮轴相垂直的平行壁面组成,如果在两平行壁面之间不装叶片,称为无叶扩压器;如果设置叶片,则称为叶片扩压器。扩压器内环形通道截面是逐渐扩大的,当气体流过时,速度逐渐降低压力逐渐升高。无叶扩压器结构简单,制造方便,由于流道内没有叶片阻挡,无冲击损失。在空调离心式制冷压缩机中,为了适应其较宽的工况范围,一般采用无叶扩压器。叶片扩压器常用于低温机组中的多级压缩机中。(5)弯道和回流器 在多级离心式制冷压缩机中,弯道和回流器是为了把由扩压器流出的气体引导至下一级叶轮。弯道的作用是将扩压器出口的气流引导至回流器进口,使气流从离心方向变为向心方向。回流器则是把气流均匀地导向下一级叶轮的进口,为此,在回流器流道中设有叶片,使气体按叶片弯曲方向流动,沿轴向进入下一级叶轮。在采用多级节流中间补气制冷循环中,段与段之间有中间加气,因此在离心式制冷压缩机的回流器中,还有级间加气的结构。图6-7给出了三种加气型式,其中b和c型对下一级叶轮入口气流均匀性不利,但可以减少轴向距离。 (6)蜗壳 蜗壳的作用是把从扩压器或从叶轮中(没有扩压器时)流出的气体汇集起来,排至冷凝器或中间冷却器。图6-8所示为离心式制冷压缩机中常用的一种蜗壳形式,其流通截面是沿叶轮转向(即进入气流的旋转方向)逐渐增大的,以适应流量沿圆周不均匀的情况,同时也起到使气流减速和扩压的作用。蜗壳一般是装在每段最后一级的扩压器之后,也有的最后级不用扩压器而将蜗壳直接装在叶轮之后,如图6-9所示。其中a为蜗壳前装有扩压器; a)蜗壳前为扩压器 b)蜗壳前为叶轮 c)不对称内蜗壳 b为蜗壳直接装在叶轮之后,这种蜗壳中气流速度较大,一般在蜗壳后再设扩压管,由于叶轮后直接是蜗壳,所以对叶轮的工作影响较大,增加了叶轮出口气流的不均匀性;c为不对称内蜗壳,是空调用单级机组中常用的形式,这种蜗壳是安置在叶轮的一侧,蜗壳的外径保持不变,其流通截面的增加是由减小内半径来达到的。蜗壳的横截面常见的有圆形、梯形等。在氟利昂冷水机组的蜗壳底部有泄油孔,水平位置设有与油引射器相连的高压气引管。各处用充气密封的高压气体均由蜗壳内引出。(7)密封 对于封闭型机组,无需采用防止制冷剂外泄漏的轴封部件。但在压缩机内部,为防止级间气体内漏,或油与气的相互渗漏,必须采用各种型式的气封和油封部件,对于开启式压缩机,还需设置轴封装置。离心式制冷压缩机中常用的密封型式有如下几种。 1)迷宫式密封 又称为梳齿密封,主要用于级间的密封,如轮盖与轴套的内密封及平衡盘处的密封。迷宫式密封由梳齿隔开的许多小室组成,它是利用梳齿形的曲径使气体向低压侧泄漏时受到多次节流膨胀降压(因为每经一道间隙和小室气体压力均有损失),从而达到减少泄漏的目的。迷宫密封的结构多种多样,常见的如图6-10所示。曲折密封优于平滑型,常用于轴套、平衡盘的密封,但制造较为复杂,轴向定位较严格。台阶型密封主要用于轮盖密封。 a)镶嵌曲折型密封 b)整体平滑型密封 c)台阶型密封 1—轴封壳体 2—弹簧 3、7—O形圈 4—静环座 5—静环 6—动环 2)机械密封 主要用于开启式压缩机中的转轴穿过机器外壳部位的轴端密封。机械密封的结构型式较多,主要有由一个静环和一个动环组成的单端面型,以及两个静环和一个动环,或两个静环和两个动环组成的双端面型。图6-11为一个动环6和两个静环5组成的双端面型机械密封。密封表面为静环与动环的接触面,弹簧2通过静环座4把静环压紧在动环上。O形圈3和7防止气体从间隙中泄漏。在压缩机工作时,轴封腔内通入压力高于气体压力约0.05~0.1MPa的润滑油,把压紧在动环两侧的静环推开一个间隙,形成密封油膜,既减少了摩擦损失,也起到了冷却和加强密封效果的作用。停机时油压下降,但恒压罐使轴封腔内尚维持一定油压,弹簧又把静环压紧在动环上,从而形成良好的停机密封。机械密封的优点是密封性能好,接近于绝对密封,且结构紧凑。但不足之处是易于磨损,寿命短,摩擦副的线速度不能太高,密封面比压也有一定的限制。 a)单片油封 b)充气油封 3)油封 图6-12a为简单的单片油封。单片油封装于轴承两侧,单片常用铝铜材料,直径间隙为0.2~0.4mm,大于轴承的径向间隙。图6-12b为充气密封。在空调用离心式制冷压缩机上,主要采用充气密封。它是在整体铸铝合金车削成的迷宫齿排中部,开有环形空腔,从压缩机的蜗壳内,引一股略高于油压的高压气体进入环形空腔中,高压气流从空腔内密封齿两端逸出,一端封油,另一端进入压缩机内。齿片的直径间隙一般取0.2~0.6mm。除上述主要零部件外,离心式制冷压缩机还有其它一些零部件。如:减少轴向推力的平衡盘;承受转子剩余轴向推力的推力轴承以及支撑转子的径向轴承等。为了使压缩机持续、安全、高效地运行,还需设置一些辅助设备和系统,如增速器、润滑系统、冷却系统、自动控制和监测及安全保护系统等。 -----这里也有: http://bbs.hcbbs.com/viewthread.php?tid=136088