㈠ 目前本科,对机器学习感兴趣,应该朝哪个方向学习
机器学习是一种人工智能(AI),它能让计算机在没有明确编程指令的情况下收集信息。对于那些尝试分析越来越多、越来越复杂数据的公司来说,这种能力是必不可少的。拥有熟练编程技能的人也供不应求。
如果对在大学深造数年不感兴趣,还有其他可进入机器学习领域的路径。克洛伊宁举例说,在发现难以找到合适的员工后,他自己创建了机器学习训练项目。他说:“我们招募拥有计算机科学或数学专业的人才,然后对他们进行相关培训。
简单说一点,之所以最左边写了‘数学基础’‘典型机器学习算法’‘编程基础’三个并行的部分,是因为机器学习是一个将数学/算法理论和工程实践紧密结合的领域,需要扎实的理论基础帮助引导数据分析与模型调优,同时也需要精湛的工程开发能力去高效化地训练和部署模型和服务。
需要多说一句的是,在互联网领域从事机器学习的人,有2类背景的人比较多,其中一部分(很大一部分)是程序员出身,这类同学工程经验相对会多一些,另一部分是学数学统计领域的同学,这部分同学理论基础相对扎实一些。因此对比上图,2类同学入门机器学习,所欠缺和需要加强的部分是不一样的。
㈡ 机器学习难吗
好吧,我标题党了,sklearn的简单也是相对于机器学习原理本身,要学好也不容易!
人工智能、机器学习,一听就是高大上的东西,想学会肯定很难。这是当然的,要理解机器学习中的各种算法模型,还是需要较强的数学功底的,这无形中提高了机器学习的门槛。但是只是要用它,却并不困难,scikit-learn的出现给程序员带来了福音,极大的降低了机器学习使用的门槛,即使你不求甚解,也能纯熟的使用各种机器学习的算法来完成自己的目
㈢ 。net程序员 最近想学习大数据只是 弱弱的问一下 其中机器学习 和 hoodap 是啥关系
他们的关系就像,你在家学习一样,你的家就是hoodap,你就是机器学习;
总结下:hoodap提供系统架构,机器学习就是你要做的事情
一般情况下,机器学习算法复杂度很高,运行一个算法可能会几天,所以,一个快速的系统架构就成了解决问题的核心
㈣ 如何从普通JAVA程序员向机器学习算法工程师转变
建议先看两类书:(1)计算机原理;(2)数据结构和算法。(看数据结构之前先看C语言)。 第二. Java、.net、C++、PB、VB、Delphi、汇编到底应该学哪个?哪个最简单就先学哪个、公司用哪个就学哪个、哪个和有缘(比如刚好认识一个愿意
㈤ 想参加好程序员的Python人工智能开发培训,前景怎么样
Python是人工智能的首选语言,人工智能是Python的一大领域,目前市场上来说,Python语言是非常受欢迎的,相对于其他的语言来说,Python更加简单、易学,适合零基础也是初学者的首选,开发效率是非常高的,其他语言几十行才可以搞定的问题,Python几行就可以解决了,同时Python应用领域比较广泛,除了人工智能之外,机器学习、数据分析、web开发、爬虫、科学运算等都是不错的选择。
㈥ 我想学人工智能,现在是个初级程序员,到什么程度可以学习人工智能机器学习这种
说实话,人工智能涉及到领域和课程太多,,学习门槛还是很高的。我现在在科大讯飞工作,我们这边最近上线了一个AI大学,里面的课程浅显易懂很符合零基础的人学习。AI 大学是讯飞开放平台发起搭建的国内首个AI在线学习平台,为所有AI群体提供学习分享和经验交流的机会,秉承“开放、学习、互动、共享”的平台理念,旨在为AI领域开发者、兴趣爱好者、专业学习群体等提供AI专业技术课程、平台运营资源、学习互动支持等服务。
建议你可以去看下,登录AI大学官网即可,对了,里面还有个专属的通行证可以看下,除了全年的免费课程,还可以直接参加科大讯飞的线下发布会,点击链接可以直接购买网页链接
最后,希望能对题主有用,有问题也可以与我交流。
㈦ 作为一个应届生程序员,我是怎么通过阿里的三轮面试的
首先,自我介绍。
我:“我做过两个项目。写过几篇论文和专利。还参加过阿里巴巴大数据竞赛。同时,出于个人兴趣,我还阅读了一下HDFS的少部分源码,理解了一下HDFS的核心思想,实现了一个功能非常简单,并且还不完善的HDFS。”
面试官1:“说一说你写的论文中的某一篇的创新点?”
我:“我写的文章或者专利,主要遵循一个原则:将已有的理论或者模型应用到新的场景中。所以,都是偏向应用的。重点说说这篇论文吧。首先,从奇异值分解说起吧……”
大概讲了几分钟后,面试官1打断我:“你做的这些东西都偏向数据挖掘方向,为什么没有投数据挖掘呢?”
我:“因为,按照我的理解,数据挖掘这个岗位需要对机器学习算法有深入研究,然而,我做的偏向于对数据挖掘算法的应用。所以,我想投研发,偏向数据挖掘和分布式方向,从基础做起。”
面试官1:“其实,你的优势是做过数据挖掘。这样吧,我先找一个数据研发的面试官对你进行一下面试。等会儿,你再来我这。”
虽然自己也系统地学习过机器学习算法,但是接触时间太短(几个月),研究不够深入,只在比赛中用过少数几种算法:LR、RF和GBRT。自己的优势在于对数据的理解和特征的提取,以及算法的应用。
而算法推导过程并不清楚,只是理解了其思想。我怕被问得太细致,所以不是很情愿。不过,在面试官1的坚持下,最终还是同意了。
看到第二个面试官的牌子上写着“数据研发”,我稍微舒了口气;幸好不是“数据挖掘”。
今年,“数据研发”岗位招人挺多的,很多都是去小微金服。面试完之后,我觉得“数据研发”的岗位要求是这样子的:
熟练掌握基本的SQL语句;因为有一道笔试题目。我觉得阿里应该用自己的ODPS-SQL(类似于Hive)进行数据研发,虽然这个平台挺复杂的,但是面试的时候的要求并不高。只要掌握基本的内建函数和SQL语句就行了:select, group by…
我在比赛过程中,写过几万行SQL代码(去重之后几千行),没有用到过索引和视图;经常用到内建函数,偶尔使用UDF(用户自定义函数)。但是,写的代码不包含索引、视图和UDF。也没有考优化(其实我也不懂)。
有数据研发方面的相关经历,面试官似乎很注重这一项。我参加过阿里巴巴大数据竞赛。
对数据研发有一些自己的看法。这个很关键,一定要思路清晰。我主要在讲比赛中的模型:数据的预处理->训练集、预测集->特征提取->进一步处理->正负样本比例->训练->预测。
当然会用写MapRece的话就过更好了。阿里的平台提供了MapRece,估计工作中会用到。
然后,跟第二个技术面试官开始交流。
面试官2:“自我介绍一下吧。”
我:“刚才介绍过其他经历了。那我主要介绍下与数据研发相关的经历吧。”然后,简单说了下自己参加的阿里巴巴大数据竞赛。
面试官2:“行。先做一道题目吧。”
面试官给了我一道SQL的题目:给定一个表,共四列:user_id, brand_id, time, cnt(花的钱数)。从这个表里面选出用户B对每个品牌brand购买的总额度。
一看到,有点窃喜,这跟我竞赛做的东西太相似了。
跟面试官进行简单沟通后,很快写出来了。不过还是怕做错,检查了很久才拿给面试官2。顺便提了一下,如果需要处理字符串的话,我会用ODPS-SQL里面的UDF。面试官看了下程序,没说什么,就放到了一边。
后面,我们主要在讨论阿里巴巴大数据竞赛:我做了什么,用什么模型、算法做的,准确率是多少。(这块讨论时间最多)
还好,我主要讨论的是对业务和数据的理解,没有深入讨论数据挖掘算法。
讨论很顺利。结束之后,面试官2把我带回面试官1。
回来后,继续与面试官1主要讨论我写的论文。由于之前对自己写的论文进行过总结,思路很清晰。并谈论了写论文的体会和收获。
总之,第一面的面试官很和蔼,交谈也很开心。
再次稍微提一下:个人觉得面试官主要有两类,一类是用技术把你问死,从而判断你对技术的掌握深度。
另一类是,简单的技术问题之后,让你去表现,引导你来讲,从而看你这个人的思想、表达能力、个人观点等综合素质。
当然,一个面试官如果看到你不善于表达,就只能一直问你问题了。很荣幸,我碰到的是第二种面试官。面试跟聊天一样轻松。
最终,顺利通过。
应该是这个样子的吧 哈哈【ITjob]