导航:首页 > 程序命令 > stata岭回归命令

stata岭回归命令

发布时间:2024-12-02 05:53:22

‘壹’ 如何用Stata命令消除多重共线性问题

影响
(1)完全共线性下参数估计量不存在
(2)近似共线性下OLS估计量非有效
多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF)如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。
总之就是找容易记忆的方法。
(3)参数估计量经济含义不合理
(4)变量的显着性检验失去意义,可能将重要的解释变量排除在模型之外
(5)模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。
需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。
判断方法
如图,是对德国人口老龄化情况的分析,其中y是老龄化情况,线性回归的x1、x2、x3分别为人均国内生产总值、出生率、每个医生平均负担人口数。
判断方法1:特征值,存在维度为3和4的值约等于0,说明存在比较严重的共线性。
判断方法2:条件索引列第3第4的值大于10,可以说明存在比较严重的共线性。
判断方法3:比例方差内存在接近1的数(0.99),可以说明存在较严重的共线性。
解决方法
(1)排除引起共线性的变量
找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。
(2)差分法
时间序列数据、线性模型:将原模型变换为差分模型。
(3)减小参数估计量的方差:岭回归法(Ridge Regression)。
(4)简单相关系数检验法

阅读全文

与stata岭回归命令相关的资料

热点内容
北电命令 浏览:937
电饭煲单片机改装应用 浏览:856
单片机用中断判断 浏览:819
命令下属图片 浏览:87
centos命令行切换图形 浏览:16
兽王杀戮命令 浏览:240
新手弄阿里云服务器没有外网ip 浏览:314
cad命令栏怎么输入 浏览:606
浙江省云服务器云主机 浏览:812
开源电子商务java 浏览:841
命令与征服将军18 浏览:213
贷款车不解压贷款公司会给绿本嘛 浏览:925
癞子胡牌算法 浏览:648
解决linux依赖 浏览:595
深圳做程序员好还是公务员 浏览:1000
电脑结束命令快捷键是啥 浏览:786
职场开发人脉用什么app 浏览:793
美国站群服务器支持什么系统 浏览:597
linux复制路径 浏览:709
电脑路由配置命令 浏览:870