① 数据挖掘会用到什么编程语言,jawa 、c 或 c++还是别的什么
数据挖掘会用到SQL结构化查询语言,其它任何编程语言仅是借助SQL结构化查询语言完成数据库的操作、查询和维护。
结构化查询语言(Structured Query Language)简称SQL,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。
结构化查询语言是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统, 可以使用相同的结构化查询语言作为数据输入与管理的接口。结构化查询语言语句可以嵌套,这使它具有极大的灵活性和强大的功能。
数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
编程语言(programming language),是用来定义计算机程序的形式语言。它是一种被标准化的交流技巧,用来向计算机发出指令。一种计算机语言让程序员能够准确地定义计算机所需要使用的数据,并精确地定义在不同情况下所应当采取的行动。
编程语言俗称“计算机语言”,种类非常的多,总的来说可以分成机器语言、汇编语言、高级语言三大类。电脑每做的一次动作,一个步骤,都是按照已经用计算机语言编好的程序来执行的,程序是计算机要执行的指令的集合,而程序全部都是用我们所掌握的语言来编写的。所以人们要控制计算机一定要通过计算机语言向计算机发出命令。 目前通用的编程语言有两种形式:汇编语言和高级语言。
② 问题做数据挖掘一般是用什么编程语言比较好
数据挖掘的编程语言,一般要看用于什么领域来进行选择,介绍一下数据挖掘的编程语言的应用:
数据挖掘会用到SQL结构化查询语言,其它任何编程语言仅是借助SQL结构化查询语言完成数据库的操作、查询和维护。结构化查询语言(Structured Query Language)简称SQL,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。一般来说做数据分析挖掘每种编程语言基本都能做。比如在社会经济领域,普遍应用的是SPASS、SAS、MODELER等,一般的话,应用EXCEL也是可以的;在其他领域,编程能力强的可以用MATLAB,Python,R等语言.上面这几种最好都学一下,做分析方面,R语言是强项。数据可视化是Matlab。但是挖数据要做爬虫,这个又会用到java和Python,Python是个全能,在分析方面有Numpy,Scipy等数据分析库,又有很多爬虫库,还有matplotlib的库把数据可视化。
如果你想了解数据挖掘使用什么编程语言,推荐CDA数据分析师的课程,课程主要培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
③ 数据挖掘是什么样的工作啊和java编程有关系吗跪求
两个工作内容联系不大,你是学习java的,我就主要介绍数据挖掘吧
数据挖掘是提取数据、建立模型分析数据、得出结果后与需求部门进行沟通的一个职业。
举个例子:银行的事业部有很多潜在的贷款申请者,事业部向数据挖掘人员提出需求,希望能够分析哪些申请者是优质放贷对象?
数据挖掘人员首先要充分理解事业部的需求,其次要从数据库提取相关数据,提取数据的工作有些时候是由DBA来完成,好了,现在你得到了历史数据,你的任务就是通过历史数据来建立模型,分析具备什么特征的申请者是有能力还贷、不拖欠的,然后用建立好的模型来预测我们刚刚得到的新的一批申请者。
再具体一点:例如,我们通过历史数据发现,年龄大于35岁,的男性,已婚,家庭人口大于3,收入在12000元以上的申请者是理想的放贷对象,那么我们用这个标准来限定新的申请者。
当然我举的例子,为了浅显易懂,是非常简单的示意例子,实际情况要复杂得多,会涉及到个人的贷款历史、信用评估、自然属性、社会属性、资产评估等情况——就是说,数据挖掘人员是要通过数据库中的海量数据,整理出哪些是有用数据,再用这些有用的数据来分析其它部门的问题,帮助他们解决问题,或者为公司的发展提供数据依据
数据挖掘的上升方向是:数据挖掘——产品层——决策层
java是属于开发,比如开发软件、接口、应用程序等,如果一个公司需要开发数据挖掘软件,那么则需要数据挖掘知识+java开发能力,只有在这种时候,才需要两个都具备
但是一般自主开发数据挖掘软件的公司很少,第一需要消耗大量人力物力,第二市场有很多现成的软件,没必要开发。
如果你想从事数据挖掘,你必须具备:
数据挖掘模型、算法的数学知识以及一些数据分析软件(SPSS、SAS、matlab、clementine)
一些数据库相关的知识(oracle、mySQL)
了解市场、其它部门需求
当然这些都是一点一滴积累起来的,没必要一蹴而就,特别是对市场、行业的了解以及对公司其它部门的需求的理解非常重要,这决定了你能否从基础的分析人员上升到产品层、决策层,都是要在实际的工作中积累起来的
至于放弃java什么的,我觉得真的不是放弃,因为你具备了java的基础,一定能派上用场,比如技术型产品经理(face book的扎克伯格和腾讯的马化腾都是技术型产品经理),这种产品经理能够清晰的把握产品的开发过程,还有市场知识。总结起来就是没有什么东西会浪费掉,你学的所有的东西都将在工作中派上用场,只是你遇到的情况不够多不够复杂而已
④ 程序员转行做大数据有什么优势
1.市场需求量大
常常查询显现,去年有很多大小互联网公司都在布局大数据。而现在大数据方面的人才仍旧十分紧缺,比方大数据生态Spark需求的Scala工程师。基于Java和Scala等技能密切的联系,有些大数据公司会瞄准JAVA工程师,经过培养转而成为大数据工程师。
2.就业方向广泛
(1)大数据开发工程师
基础大数据服务渠道,大中型的商业运用包括咱们常说的企业级运用(主要指杂乱的大企业的软件系统)、各种类型的网站等。担任建立大数据运用渠道以及开发剖析运用程序。
(2)大数据剖析师
担任数据挖掘作业,运用Hive、Hbase等技能,专门对从事行业数据搜集、整理、剖析,并依据数据做出行业研究、评估和猜测的专业人员。以及经过运用新型数据可视化东西如Spotifre,Qlikview和Tableau,对数据进行数据可视化和数据呈现。
(3)Android工程师
Android是一种基于Linux的自由及开放源代码的操作系统,其源代码是Java。所以市场上见到的手机系统例如MIUI,阿里云,乐蛙等,都是修正源代码再发行的。Java做安卓不单单是指系统,还有APP对于更多的开发人员来说,他们更多的时刻是花在开发APP上面。
关于程序员转行做大数据有什么优势,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑤ 有数据挖掘方面的证书吗数据发掘是不是的会编程有知道的给我指点一下。非常感谢!
有IBM PASW Modeler和SA两个数据挖掘认证,你可以根据实际情况自己查一下。
全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA数据分析师职业道德和行为准则》新规范,发挥着自身数据科学专业能力旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。数据挖掘的任务就是在如此海量的数据中发现有用的数据。但是仅仅发现数据那是不够的。会编程对学习数据挖掘有一定的好处,但如果是走业务分析,编程不是必须的。
关于数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
⑥ 数据挖掘技术对于没有编程经验的初学者一般需要多长时间学会啊
学习数据挖掘需要多长时间,主要看个人的基础和学习能力,学习能力强的人大概需要两到三个月。
要学数据挖掘需要学好统计学的知识,统计学软件有专门做数据分析的spss,和数值计算方面强大的matlab。但这两个软件和有没有编程基础关系不大,matlab可能需要一些编程,spss并不需要。同时因为在数据挖掘过程中,需要建模,而在建模过程中,需要掌握两个基础的数据学科,也就是数学学科的线性代数和统计学。虽然两个学科侧重虽有不同,但是常常是共同使用的,对于代数方法,往往需要统计上的解释,对于统计模型,其具体计算则需要代数的帮助。所以想学好数据挖掘,一定要学好数学。
如果对数据挖掘的学习有疑问的话,推荐CDA数据分析师的课程,教你学企业需要的敏捷算法建模能力,可以学到前沿且实用的技术,挖掘数据的魅力;教你用可落地、易操作的数据科学思维和技术模板构建出优秀模型点击预约免费试听课。
⑦ 大数据、数据分析和数据挖掘的区别是什么
大数据概念:大数据是近两年提出来的,有三个重要的特征:数据量大,结构复杂,数据更新速度很快。由于Web技术的发展,web用户产生的数据自动保存、传感器也在不断收集数据,以及移动互联网的发展,数据自动收集、存储的速度在加快,全世界的数据量在不断膨胀,数据的存储和计算超出了单个计算机(小型机和大型机)的能力,这给数据挖掘技术的实施提出了挑战(一般而言,数据挖掘的实施基于一台小型机或大型机,也可以进行并行计算)。
数据挖掘概念: 数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。数据挖掘的定义是从海量数据中找到有意义的模式或知识。
大数据需要映射为小的单元进行计算,再对所有的结果进行整合,就是所谓的map-rece算法框架。在单个计算机上进行的计算仍然需要采用一些数据挖掘技术,区别是原先的一些数据挖掘技术不一定能方便地嵌入到 map-rece 框架中,有些算法需要调整。
大数据和数据挖掘的相似处或者关联在于: 数据挖掘的未来不再是针对少量或是样本化,随机化的精准数据,而是海量,混杂的大数据,数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断。
拓展资料:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
⑧ 做数据挖掘一般是用什么编程语言比较好
做数据挖掘一般是用什么编程语言比较好这个问题得看什么领域。
比如在社会经济领域,spss,sas,modeler等工具一般的excel也可以。其他领域,编程能力强的可以用MATLAB,Python,R等语言。上面这几种最好都学一下。数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进。数据挖掘应当更正确的命名为“从数据中挖掘知识”,不过后者显得过长了些。数据挖掘——从大量数据中挖掘有趣模式和知识的过程。
如果你想学习更多关于数据挖掘方面的知识,推荐CDA数据分析师的课程,它安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的应用实现,并根据输出的结果分析业务需求,为进行合理、有效的策略优化提供数据支撑。课程培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化等思维,全方位提升学员的数据洞察力。点击预约免费试听课。