① 想写个JAVA文件加密解密程序,希望被加密的文件能被正确的keys解锁读取但是不能被改写和拷贝。超高分答谢
想写个JAVA文件加密解密程序,希望被加密的文件能被正确的keys解锁读取但是不能被改写和拷贝。超高分答谢
我推荐用文件夹加密超级大师,这是一款安全易用的文件夹加密软件。
支持所有windows系统。可以加密文件夹,加密文件,加密磁盘,安全易用。加密后的资料防删除,复制。
使用方法很简单:
1 下载安装文件夹加密超级大师。
2 在需要加密的文件夹上单击右键选择加密。
3 在弹出的窗口中设置密码就OK了。
希望对你有帮助。
② Win7网络凭据里面的账户密码存在哪个文件,能提取出来吗
1、用户密码存储于X:\windows\system32\config\sam文件中,但是存储的密码是经过不可逆加密算法处理的。
2、SAM文件本身是系统使用的文件,是无法直接复制出来的,要复制出来,程序员的作法一般有两种,其一、在句柄表中修改访问权限拷贝SAM,其二、直接硬盘复制,Windows通过簇的形式来管理硬盘文件,通过簇相关的api函数直接复制。网上有具体的源码,有兴趣可以搜索下载慢慢研究。
③ 有那个程序员能把这个 PDF 密码给破解掉。本人必定重金感谢。其他人不妨一试
已经联系你,希望能帮到你
④ 什么是木马程序,他是怎样盗取密码的,能详细说说吗应该怎样判断是否是木马程序呢
什么是木马?
特洛伊木马(以下简称木马),英文叫做“Trojan house”,其名称取自希腊神话的特洛伊木马记。
它是一种基于远程控制的黑客工具,具有隐蔽性和非授权性的特点。
所谓隐蔽性是指木马的设计者为了防止木马被发现,会采用多种手段隐藏木马,这样服务端即使发现感染了木马,由于不能确定其具体位置,往往只能望“马”兴叹。
所谓非授权性是指一旦控制端与服务端连接后,控制端将享有服务端的大部分操作权限,包括修改文件,修改注册表,控制鼠标,键盘等等,而这些权力并不是服务端赋予的,而是通过木马程序窃取的。
从木马的发展来看,基本上可以分为两个阶段。
最初网络还处于以UNIX平台为主的时期,木马就产生了,当时的木马程序的功能相对简单,往往是将一段程序嵌入到系统文件中,用跳转指令来执行一些木马的功能,在这个时期木马的设计者和使用者大都是些技术人员,必须具备相当的网络和编程知识。
而后随着WINDOWS平台的日益普及,一些基于图形操作的木马程序出现了,用户界面的改善,使使用者不用懂太多的专业知识就可以熟练的操作木马,相对的木马入侵事件也频繁出现,而且由于这个时期木马的功能已日趋完善,因此对服务端的破坏也更大了。
所以所木马发展到今天,已经无所不用其极,一旦被木马控制,你的电脑将毫无秘密可言。
参考资料:http://bbs.51ww.com/365000/ShowPost.aspx
回答者:完颜康康 - 探花 十一级 9-18 12:40
--------------------------------------------------------------------------------
DLL 木马揭秘
相信经常玩木马的朋友们都会知道一些木马的特性,也会有自己最喜爱的木马,不过,很多朋友依然不知道近年兴起的“DLL木马”为何物。什么是“DLL木马”呢?它与一般的木马有什么不同?
一、从DLL技术说起
要了解DLL木马,就必须知道这个“DLL”是什么意思,所以,让我们追溯到几年前,DOS系统大行其道的日子里。在那时候,写程序是一件繁琐的事情,因为每个程序的代码都是独立的,有时候为了实现一个功能,就要为此写很多代码,后来随着编程技术发展,程序员们把很多常用的代码集合(通用代码)放进一个独立的文件里,并把这个文件称为“库”(Library),在写程序的时候,把这个库文件加入编译器,就能使用这个库包含的所有功能而不必自己再去写一大堆代码,这个技术被称为“静态链接”(Static Link)。静态链接技术让劳累的程序员松了口气,一切似乎都很美好。可是事实证明,美好的事物不会存在太久,因为静态链接就像一个粗鲁的推销员,不管你想不想要宣传单,他都全部塞到你的手上来。写一个程序只想用到一个库文件包含的某个图形效果,就因为这个,你不得不把这个库文件携带的所有的图形效果都加入程序,留着它们当花瓶摆设,这倒没什么重要,可是这些花瓶却把道路都阻塞了——静态链接技术让最终的程序成了大块头,因为编译器把整个库文件也算进去了。
时代在发展,静态链接技术由于天生的弊端,不能满足程序员的愿望,人们开始寻找一种更好的方法来解决代码重复的难题。后来,Windows系统出现了,时代的分水岭终于出现。Windows系统使用一种新的链接技术,这种被称为“动态链接”(Dynamic Link)的新技术同样也是使用库文件,微软称它们为“动态链接库”——Dynamic Link Library,DLL的名字就是这样来的。动态链接本身和静态链接没什么区别,也是把通用代码写进一些独立文件里,但是在编译方面,微软绕了个圈子,并没有采取把库文件加进程序的方法,而是把库文件做成已经编译好的程序文件,给它们开个交换数据的接口,程序员写程序的时候,一旦要使用某个库文件的一个功能函数,系统就把这个库文件调入内存,连接上这个程序占有的任务进程,然后执行程序要用的功能函数,并把结果返回给程序显示出来,在我们看来,就像是程序自己带有的功能一样。完成需要的功能后,这个DLL停止运行,整个调用过程结束。微软让这些库文件能被多个程序调用,实现了比较完美的共享,程序员无论要写什么程序,只要在代码里加入对相关DLL的调用声明就能使用它的全部功能。最重要的是,DLL绝对不会让你多拿一个花瓶,你要什么它就给你什么,你不要的东西它才不会给你。这样,写出来的程序就不能再携带一大堆垃圾了——绝对不会让你把吃剩的东西带回家,否则罚款,这是自助餐。
DLL技术的诞生,使编写程序变成一件简单的事情,Windows为我们提供了几千个函数接口,足以满足大多数程序员的需要。而且,Windows系统自身就是由几千个DLL文件组成,这些DLL相互扶持,组成了强大的Windows系统。如果Windows使用静态链接技术,它的体积会有多大?我不敢想。
二、应用程序接口API
上面我们对DLL技术做了个大概分析,在里面我提到了“接口”,这又是什么呢?因为DLL不能像静态库文件那样塞进程序里,所以,如何让程序知道实现功能的代码和文件成了问题,微软就为DLL技术做了标准规范,让一个DLL文件像奶酪一样开了许多小洞,每个洞口都注明里面存放的功能的名字,程序只要根据标准规范找到相关洞口就可以取得它要的美味了,这个洞口就是“应用程序接口”(Application Programming Interface),每个DLL带的接口都不相同,尽最大可能的减少了代码的重复。用Steven的一句话:API就是一个工具箱,你根据需要取出螺丝刀、扳手,用完后再把它们放回原处。在Windows里,最基本的3个DLL文件是kernel32.dll、user32.dll、gdi32.dll。它们共同构成了基本的系统框架。
三、DLL与木马
DLL是编译好的代码,与一般程序没什么大差别,只是它不能独立运行,需要程序调用。那么,DLL与木马能扯上什么关系呢?如果你学过编程并且写过DLL,就会发现,其实DLL的代码和其他程序几乎没什么两样,仅仅是接口和启动模式不同,只要改动一下代码入口,DLL就变成一个独立的程序了。当然,DLL文件是没有程序逻辑的,这里并不是说DLL=EXE,不过,依然可以把DLL看做缺少了main入口的EXE,DLL带的各个功能函数可以看作一个程序的几个函数模块。DLL木马就是把一个实现了木马功能的代码,加上一些特殊代码写成DLL文件,导出相关的API,在别人看来,这只是一个普通的DLL,但是这个DLL却携带了完整的木马功能,这就是DLL木马的概念。也许有人会问,既然同样的代码就可以实现木马功能,那么直接做程序就可以,为什么还要多此一举写成DLL呢?这是为了隐藏,因为DLL运行时是直接挂在调用它的程序的进程里的,并不会另外产生进程,所以相对于传统EXE木马来说,它很难被查到。
四、DLL的运行
虽然DLL不能自己运行,可是Windows在加载DLL的时候,需要一个入口函数,就如同EXE的main一样,否则系统无法引用DLL。所以根据编写规范,Windows必须查找并执行DLL里的一个函数DllMain作为加载DLL的依据,这个函数不作为API导出,而是内部函数。DllMain函数使DLL得以保留在内存里,有的DLL里面没有DllMain函数,可是依然能使用,这是因为Windows在找不到DllMain的时候,会从其它运行库中找一个不做任何操作的缺省DllMain函数启动这个DLL使它能被载入,并不是说DLL可以放弃DllMain函数。
五、DLL木马技术分析
到了这里,您也许会想,既然DLL木马有那么多好处,以后写木马都采用DLL方式不就好了吗?话虽然是这么说没错,但是DLL木马并不是一些人想象的那么容易写的。要写一个能用的DLL木马,你需要了解更多知识。
1.木马的主体
千万别把木马模块写得真的像个API库一样,这不是开发WINAPI。DLL木马可以导出几个辅助函数,但是必须有一个过程负责主要执行代码,否则这个DLL只能是一堆零碎API函数,别提工作了。
如果涉及一些通用代码,可以在DLL里写一些内部函数,供自己的代码使用,而不是把所有代码都开放成接口,这样它自己本身都难调用了,更不可能发挥作用。
DLL木马的标准执行入口为DllMain,所以必须在DllMain里写好DLL木马运行的代码,或者指向DLL木马的执行模块。
2.动态嵌入技术
Windows中,每个进程都有自己的私有内存空间,别的进程是不允许对这个私人领地进行操作的,但是,实际上我们仍然可以利用种种方法进入并操作进程的私有内存,这就是动态嵌入,它是将自己的代码嵌入正在运行的进程中的技术。动态嵌入有很多种,最常见的是钩子、API以及远程线程技术,现在的大多数DLL木马都采用远程线程技术把自己挂在一个正常系统进程中。其实动态嵌入并不少见,罗技的MouseWare驱动就挂着每一个系统进程-_-
远程线程技术就是通过在另一个进程中创建远程线程(RemoteThread)的方法进入那个进程的内存地址空间。在DLL木马的范畴里,这个技术也叫做“注入”,当载体在那个被注入的进程里创建了远程线程并命令它加载DLL时,木马就挂上去执行了,没有新进程产生,要想让木马停止惟有让挂接这个木马DLL的进程退出运行。但是,很多时候我们只能束手无策——它和Explorer.exe挂在一起了,你确定要关闭Windows吗?
3.木马的启动
有人也许会迫不及待的说,直接把这个DLL加入系统启动项目不就可以了。答案是NO,前面说过,DLL不能独立运行,所以无法在启动项目里直接启动它。要想让木马跑起来,就需要一个EXE使用动态嵌入技术让DLL搭上其他正常进程的车,让被嵌入的进程调用这个DLL的DllMain函数,激发木马运行,最后启动木马的EXE结束运行,木马启动完毕。
启动DLL木马的EXE是个重要角色,它被称为Loader,如果没有Loader,DLL木马就是破烂一堆,因此,一个算得上成熟的DLL木马会想办法保护它的Loader不会那么容易被毁灭。记得狼狈为奸的故事吗?DLL木马就是爬在狼Loader上的狈。
Loader可以是多种多样的,Windows的rundll32.exe也被一些DLL木马用来做了Loader,这种木马一般不带动态嵌入技术,它直接挂着rundll32进程运行,用rundll32的方法(rundll32.exe [DLL名],[函数] [参数])像调用API一样去引用这个DLL的启动函数激发木马模块开始执行,即使你杀了rundll32,木马本体还是在的,一个最常见的例子就是3721中文实名,虽然它不是木马。
注册表的AppInit_DLLs键也被一些木马用来启动自己,如求职信病毒。利用注册表启动,就是让系统执行DllMain来达到启动木马的目的。因为它是kernel调入的,对这个DLL的稳定性有很大要求,稍有错误就会导致系统崩溃,所以很少看到这种木马。
有一些更复杂点的DLL木马通过svchost.exe启动,这种DLL木马必须写成NT-Service,入口函数是ServiceMain,一般很少见,但是这种木马的隐蔽性也不错,而且Loader有保障。
4.其它
到这里大家也应该对DLL木马有个了解了,是不是很想写一个?别急,不知道大家想过没有,既然DLL木马这么好,为什么到现在能找到的DLL木马寥寥无几?现在让我来泼冷水,最重要的原因只有一个:由于DLL木马挂着系统进程运行,如果它本身写得不好,例如没有防止运行错误的代码或者没有严格规范用户的输入,DLL就会出错崩溃。别紧张,一般的EXE也是这样完蛋的,但是DLL崩溃会导致它挂着的程序跟着遭殃,别忘记它挂接的是系统进程哦,结局就是……惨不忍睹。所以写一个能公布的DLL木马,在排错检查方面做的工作要比一般的EXE木马多,写得多了自己都烦躁……
六、DLL木马的发现和查杀
经常看看启动项有没有多出莫名其妙的项目,这是Loader的所在,只要杀了狼,狈就不能再狂了。而DLL木马本体比较难发现,需要你有一定编程知识和分析能力,在Loader里查找DLL名称,或者从进程里看多挂接了什么陌生的DLL,可是对新手来说……总之就是比较难啊比较难,所以,最简单的方法:杀毒软件和防火墙(不是万能药,切忌长期服用)。
⑤ 用c语言程序能对文件夹加密吗,怎样加密
没有无用的语言,只有无用的程序员。如果C++都不行的话,哪个语言可以?
⑥ bat文件开机密码文件
新建一个new.bat
输入 shutdown -r -t 1
保存退出
双击就可以直接重启电脑。
如果你想锁别人机器我不太赞同。
毕竟程序员的初衷不是干坏事,代码我不会提供给你。
但是我可以告诉你思路,设置了密码,其实密码就是个文件而已,你可以给电脑设个密码,然后把那个对应的密码文件复制到别人的电脑里,密码是会生效的,用这种bat批处理文件把自己的密码文件用替换命令替换一下就可以了。
⑦ 为什么我的计算机文件属性里的加密文件不能打钩 是ibm Windows7操作系统
为什么我的计算机文件属性里的加密文件不能打钩 是ibm Windows7操作系统
我推荐用文件夹加密超级大师,这是一款安全易用的文件夹加密软件。
支持所有windows系统。可以加密文件夹,加密文件,加密磁盘,安全易用。加密后的资料防删除,复制。
使用方法很简单:
1 下载安装文件夹加密超级大师。
2 在需要加密的文件夹上单击右键选择加密。
3 在弹出的窗口中设置密码就OK了。
你可以试试,挺不错。
⑧ 如何设置文件加密
步骤一:打开Windows资源管理器。
步骤二:右键单击要加密的文件或文件夹,然后单击“属性”。
步骤三:在“常规”选项卡上,单击“高级”。选中“加密内容以便保护数据”复选框
我按这个方法加密了一个文件夹,看来没什么作用,还是是因为我没操作正确。
这个是账户加密的的。也就是说
那账户加密的那个就可用。你换一个账户就不能用了。
你还是用加密软件加密方便一些
⑨ 简述最常用的加密标准及其实现方法和技术
作者:老罗
这是从“VC编程经验总结7”中转出来的
借花献佛——如何通过崩溃地址找到出错的代码行
作为程序员,我们平时最担心见到的事情是什么?是内存泄漏?是界面不好看?……错啦!我相信我的看法是不会有人反对的--那就是,程序发生了崩溃!
“该程序执行了非法操作,即将关闭。请与你的软件供应商联系。”,呵呵,这句 M$ 的“名言”,恐怕就是程序员最担心见到的东西了。有的时候,自己的程序在自己的机器上运行得好好的,但是到了别人的机器上就崩溃了;有时自己在编写和测试的过程中就莫名其妙地遇到了非法操作,但是却无法确定到底是源代码中的哪行引起的……是不是很痛苦呢?不要紧,本文可以帮助你走出这种困境,甚至你从此之后可以自豪地要求用户把崩溃地址告诉你,然后你就可以精确地定位到源代码中出错的那行了。(很神奇吧?呵呵。)
首先我必须强调的是,本方法可以在目前市面上任意一款编译器上面使用。但是我只熟悉 M$ 的 VC 和 MASM ,因此后面的部分只介绍如何在这两个编译器中实现,请读者自行融会贯通,掌握在别的编译器上使用的方法。
Well,废话说完了,让我们开始! :)
首先必须生成程序的 MAP 文件。什么是 MAP 文件?简单地讲, MAP 文件是程序的全局符号、源文件和代码行号信息的唯一的文本表示方法,它可以在任何地方、任何时候使用,不需要有额外的程序进行支持。而且,这是唯一能找出程序崩溃的地方的救星。
好吧,既然 MAP 文件如此神奇,那么我们应该如何生成它呢?在 VC 中,我们可以按下 Alt+F7 ,打开“Project Settings”选项页,选择 C/C++ 选项卡,并在最下面的 Project Options 里面输入:/Zd ,然后要选择 Link 选项卡,在最下面的 Project Options 里面输入: /mapinfo:lines 和 /map:PROJECT_NAME.map 。最后按下 F7 来编译生成 EXE 可执行文件和 MAP 文件。
在 MASM 中,我们要设置编译和连接参数,我通常是这样做的:
rc %1.rc
ml /c /coff /Zd %1.asm
link /subsystem:windows /mapinfo:exports /mapinfo:lines /map:%1.map %1.obj %1.res
把它保存成 makem.bat ,就可以在命令行输入 makem filename 来编译生成 EXE 可执行文件和 MAP 文件了。
在此我先解释一下加入的参数的含义:
/Zd 表示在编译的时候生成行信息
/map[:filename] 表示生成 MAP 文件的路径和文件名
/mapinfo:lines 表示生成 MAP 文件时,加入行信息
/mapinfo:exports 表示生成 MAP 文件时,加入 exported functions (如果生成的是 DLL 文件,这个选项就要加上)
OK,通过上面的步骤,我们已经得到了 MAP 文件,那么我们该如何利用它呢?
让我们从简单的实例入手,请打开你的 VC ,新建这样一个文件:
01 file://****************************************************************
02 file://程序名称:演示如何通过崩溃地址找出源代码的出错行
03 file://作者:罗聪
04 file://日期:2003-2-7
05 file://出处:http://www.luocong.com(老罗的缤纷天地)
06 file://本程序会产生“除0错误”,以至于会弹出“非法操作”对话框。
07 file://“除0错误”只会在 Debug 版本下产生,本程序为了演示而尽量简化。
08 file://注意事项:如欲转载,请保持本程序的完整,并注明:
09 file://转载自“老罗的缤纷天地”(http://www.luocong.com)
10 file://****************************************************************
11
12 void Crash(void)
13 {
14 int i = 1;
15 int j = 0;
16 i /= j;
17 }
18
19 void main(void)
20 {
21 Crash();
22 }
很显然本程序有“除0错误”,在 Debug 方式下编译的话,运行时肯定会产生“非法操作”。好,让我们运行它,果然,“非法操作”对话框出现了,这时我们点击“详细信息”按钮,记录下产生崩溃的地址--在我的机器上是 0x0040104a 。
再看看它的 MAP 文件:(由于文件内容太长,中间没用的部分我进行了省略)
CrashDemo
Timestamp is 3e430a76 (Fri Feb 07 09:23:02 2003)
Preferred load address is 00400000
Start Length Name Class
0001:00000000 0000de04H .text CODE
0001:0000de04 0001000cH .textbss CODE
0002:00000000 00001346H .rdata DATA
0002:00001346 00000000H .edata DATA
0003:00000000 00000104H .CRT$XCA DATA
0003:00000104 00000104H .CRT$XCZ DATA
0003:00000208 00000104H .CRT$XIA DATA
0003:0000030c 00000109H .CRT$XIC DATA
0003:00000418 00000104H .CRT$XIZ DATA
0003:0000051c 00000104H .CRT$XPA DATA
0003:00000620 00000104H .CRT$XPX DATA
0003:00000724 00000104H .CRT$XPZ DATA
0003:00000828 00000104H .CRT$XTA DATA
0003:0000092c 00000104H .CRT$XTZ DATA
0003:00000a30 00000b93H .data DATA
0003:000015c4 00001974H .bss DATA
0004:00000000 00000014H .idata$2 DATA
0004:00000014 00000014H .idata$3 DATA
0004:00000028 00000110H .idata$4 DATA
0004:00000138 00000110H .idata$5 DATA
0004:00000248 000004afH .idata$6 DATA
Address Publics by Value Rva+Base Lib:Object
0001:00000020 ?Crash@@YAXXZ 00401020 f CrashDemo.obj
0001:00000070 _main 00401070 f CrashDemo.obj
0004:00000000 __IMPORT_DESCRIPTOR_KERNEL32 00424000 kernel32:KERNEL32.dll
0004:00000014 __NULL_IMPORT_DESCRIPTOR 00424014 kernel32:KERNEL32.dll
0004:00000138 __imp__GetCommandLineA@0 00424138 kernel32:KERNEL32.dll
0004:0000013c __imp__GetVersion@0 0042413c kernel32:KERNEL32.dll
0004:00000140 __imp__ExitProcess@4 00424140 kernel32:KERNEL32.dll
0004:00000144 __imp__DebugBreak@0 00424144 kernel32:KERNEL32.dll
0004:00000148 __imp__GetStdHandle@4 00424148 kernel32:KERNEL32.dll
0004:0000014c __imp__WriteFile@20 0042414c kernel32:KERNEL32.dll
0004:00000150 __imp__InterlockedDecrement@4 00424150 kernel32:KERNEL32.dll
0004:00000154 __imp__OutputDebugStringA@4 00424154 kernel32:KERNEL32.dll
0004:00000158 __imp__GetProcAddress@8 00424158 kernel32:KERNEL32.dll
0004:0000015c __imp__LoadLibraryA@4 0042415c kernel32:KERNEL32.dll
0004:00000160 __imp__InterlockedIncrement@4 00424160 kernel32:KERNEL32.dll
0004:00000164 __imp__GetMoleFileNameA@12 00424164 kernel32:KERNEL32.dll
0004:00000168 __imp__TerminateProcess@8 00424168 kernel32:KERNEL32.dll
0004:0000016c __imp__GetCurrentProcess@0 0042416c kernel32:KERNEL32.dll
0004:00000170 __imp__UnhandledExceptionFilter@4 00424170 kernel32:KERNEL32.dll
0004:00000174 __imp__FreeEnvironmentStringsA@4 00424174 kernel32:KERNEL32.dll
0004:00000178 __imp__FreeEnvironmentStringsW@4 00424178 kernel32:KERNEL32.dll
0004:0000017c __imp__WideCharToMultiByte@32 0042417c kernel32:KERNEL32.dll
0004:00000180 __imp__GetEnvironmentStrings@0 00424180 kernel32:KERNEL32.dll
0004:00000184 __imp__GetEnvironmentStringsW@0 00424184 kernel32:KERNEL32.dll
0004:00000188 __imp__SetHandleCount@4 00424188 kernel32:KERNEL32.dll
0004:0000018c __imp__GetFileType@4 0042418c kernel32:KERNEL32.dll
0004:00000190 __imp__GetStartupInfoA@4 00424190 kernel32:KERNEL32.dll
0004:00000194 __imp__HeapDestroy@4 00424194 kernel32:KERNEL32.dll
0004:00000198 __imp__HeapCreate@12 00424198 kernel32:KERNEL32.dll
0004:0000019c __imp__HeapFree@12 0042419c kernel32:KERNEL32.dll
0004:000001a0 __imp__VirtualFree@12 004241a0 kernel32:KERNEL32.dll
0004:000001a4 __imp__RtlUnwind@16 004241a4 kernel32:KERNEL32.dll
0004:000001a8 __imp__GetLastError@0 004241a8 kernel32:KERNEL32.dll
0004:000001ac __imp__SetConsoleCtrlHandler@8 004241ac kernel32:KERNEL32.dll
0004:000001b0 __imp__IsBadWritePtr@8 004241b0 kernel32:KERNEL32.dll
0004:000001b4 __imp__IsBadReadPtr@8 004241b4 kernel32:KERNEL32.dll
0004:000001b8 __imp__HeapValidate@12 004241b8 kernel32:KERNEL32.dll
0004:000001bc __imp__GetCPInfo@8 004241bc kernel32:KERNEL32.dll
0004:000001c0 __imp__GetACP@0 004241c0 kernel32:KERNEL32.dll
0004:000001c4 __imp__GetOEMCP@0 004241c4 kernel32:KERNEL32.dll
0004:000001c8 __imp__HeapAlloc@12 004241c8 kernel32:KERNEL32.dll
0004:000001cc __imp__VirtualAlloc@16 004241cc kernel32:KERNEL32.dll
0004:000001d0 __imp__HeapReAlloc@16 004241d0 kernel32:KERNEL32.dll
0004:000001d4 __imp__MultiByteToWideChar@24 004241d4 kernel32:KERNEL32.dll
0004:000001d8 __imp__LCMapStringA@24 004241d8 kernel32:KERNEL32.dll
0004:000001dc __imp__LCMapStringW@24 004241dc kernel32:KERNEL32.dll
0004:000001e0 __imp__GetStringTypeA@20 004241e0 kernel32:KERNEL32.dll
0004:000001e4 __imp__GetStringTypeW@16 004241e4 kernel32:KERNEL32.dll
0004:000001e8 __imp__SetFilePointer@16 004241e8 kernel32:KERNEL32.dll
0004:000001ec __imp__SetStdHandle@8 004241ec kernel32:KERNEL32.dll
0004:000001f0 __imp__FlushFileBuffers@4 004241f0 kernel32:KERNEL32.dll
0004:000001f4 __imp__CloseHandle@4 004241f4 kernel32:KERNEL32.dll
0004:000001f8 \177KERNEL32_NULL_THUNK_DATA 004241f8 kernel32:KERNEL32.dll
entry point at 0001:000000f0
Line numbers for .\Debug\CrashDemo.obj(d:\msdev\myprojects\crashdemo\crashdemo.cpp) segment .text
13 0001:00000020 14 0001:00000038 15 0001:0000003f 16 0001:00000046
17 0001:00000050 20 0001:00000070 21 0001:00000088 22 0001:0000008d
如果仔细浏览 Rva+Base 这栏,你会发现第一个比崩溃地址 0x0040104a 大的函数地址是 0x00401070 ,所以在 0x00401070 这个地址之前的那个入口就是产生崩溃的函数,也就是这行:
0001:00000020 ?Crash@@YAXXZ 00401020 f CrashDemo.obj
因此,发生崩溃的函数就是 ?Crash@@YAXXZ ,所有以问号开头的函数名称都是 C++ 修饰的名称。在我们的源程序中,也就是 Crash() 这个子函数。
OK,现在我们轻而易举地便知道了发生崩溃的函数名称,你是不是很兴奋呢?呵呵,先别忙,接下来,更厉害的招数要出场了。
请注意 MAP 文件的最后部分--代码行信息(Line numbers information),它是以这样的形式显示的:
13 0001:00000020
第一个数字代表在源代码中的代码行号,第二个数是该代码行在所属的代码段中的偏移量。
如果要查找代码行号,需要使用下面的公式做一些十六进制的减法运算:
崩溃行偏移 = 崩溃地址(Crash Address) - 基地址(ImageBase Address) - 0x1000
为什么要这样做呢?细心的朋友可能会留意到 Rva+Base 这栏了,我们得到的崩溃地址都是由 偏移地址(Rva)+ 基地址(Base) 得来的,所以在计算行号的时候要把基地址减去,一般情况下,基地址的值是 0x00400000 。另外,由于一般的 PE 文件的代码段都是从 0x1000 偏移开始的,所以也必须减去 0x1000 。
好了,明白了这点,我们就可以来进行小学减法计算了:
崩溃行偏移 = 0x0040104a - 0x00400000 - 0x1000 = 0x4a
如果浏览 MAP 文件的代码行信息,会看到不超过计算结果,但却最接近的数是 CrashDemo.cpp 文件中的:
16 0001:00000046
也就是在源代码中的第 16 行,让我们来看看源代码:
16 i /= j;
哈!!!果然就是第 16 行啊!
兴奋吗?我也一样! :)
方法已经介绍完了,从今以后,我们就可以精确地定位到源代码中的崩溃行,而且只要编译器可以生成 MAP 文件(包括 VC、MASM、VB、BCB、Delphi……),本方法都是适用的。我们时常抱怨 M$ 的产品如何如何差,但其实 M$ 还是有意无意间提供了很多有价值的信息给我们的,只是我们往往不懂得怎么利用而已……相信这样一来,你就可以更为从容地面对“非法操作”提示了。你甚至可以要求用户提供崩溃的地址,然后就可以坐在家中舒舒服服地找到出错的那行,并进行修正。
⑩ 加密文件,加密算法:每个细节高低4位交换,求程序员大佬帮助
l = a & 0xf 就是 低四位,需要 左移4位
h = a & 0xf0 就是 高四位,需右移四位
两个 相或 h | l 就可以
可以试一试用 %x 输出 处理前后 的数据,看是不是 高低四位互换