导航:首页 > 编程语言 > python数字图表

python数字图表

发布时间:2022-06-12 22:27:39

Ⅰ 现在市场上有PowerBi或者Tableau可以做很好的图表,那还有人用python来制作可视化图表吗有什么优点

链接:http://pan..com/s/1BWBtFMYeQazJWUYSmHi5fw

提取码:yz10

Python&Tableau:商业数据分析与可视化。Tableau的程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表。这一软件的理念是,界面上的数据越容易操控,公司对自己在所在业务领域里的所作所为到底是正确还是错误,就能了解得越透彻。

快速分析:在数分钟内完成数据连接和可视化。Tableau 比现有的其他解决方案快 10 到 100 倍。大数据,任何数据:无论是电子表格、数据库还是 Hadoop 和云服务,任何数据都可以轻松探索。

课程目录:

前置课程-Python在咨询、金融、四大等领域的应用以及效率提升

Python基础知识

Python入门:基于Anaconda与基于Excel的Python安装和界面

简单的数学计算

Python数据分析-时间序列2-数据操作与绘图

Python数据分析-时间序列3-时间序列分解

......

Ⅱ Python中数据可视化的两个库!

1. Matplotlib:是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代的商业化程序语言MATLAB十分相似,具有很多强大且复杂的可视化功能;还包含了多种类型的API,可以采用多种方式绘制图标并对图标进行定制。
2. Seaborn:是基于Matplotlib进行高级封装的可视化库,支持交互式界面,使绘制图表功能变得简单,且图表的色彩更具吸引力。
3. ggplot:是基于Matplotlib并旨在以简单方式提高Matplotlib可视化感染力的库,采用叠加图层的形式绘制图形,比如先绘制坐标轴所在的图层,再绘制点所在的图层,最后绘制线所在的图层,但其并不适用于个性化定制图形。
4. Boken:是一个交互式的可视化库,支持使用Web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。
5. Pygal:是一个可缩放矢量图标库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。
6. Pyecharts:是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。

Ⅲ 如何利用python对大量数据作图

可以在matplotlib的文档中找到各种图表类型,由于根据特定布局创建Figure和subplot是一件常见的任务,于是便出现一个更为方便的方法: plt.subplots,它可以创建一个新的Figure,且返回一个含有已创建的subplot对象的numpy数组。

Ⅳ 如何用Python制作优美且功能强大的数据可视

主要方法,用于添加图表的数据和设置各种配置项
print_echarts_options()
打印输出图表的所有配置项
render()
默认将会在根目录下生成一个render.html的文件,支持path参数,设置文件保存位置,如render(r”e:my_first_chart.html”),文件用浏览器打开。
Note:可以按右边的下载按钮将图片下载到本地,如果想要提供更多实用工具按钮,请在add()中设置is_more_utils为True

frompyechartsimportBar

bar=Bar("我的第一个图表","这里是副标题")
bar.add("服装",
["衬衫","羊毛衫","雪纺衫","裤子","高跟鞋","袜子"],[5,20,36,10,75,90],
is_more_utils=True)
bar.render()

Ⅳ 如何用Python绘制学术报告图表

当数据较多时,容易出现excel"翻白眼"的现象;
需要使用subplot功能或批量处理时,使用MATLAB或Python更为方便;
excel处理的图在美观程度上较论文图表标准有一定的距离。

Ⅵ python中如何将表中的数据做成一张表,然后再从中取出数据

第一部分是生成数据表,常见的生成方法有两种,第一种是导入外部数据,第二种是直接写入数据。 Excel 中的文件菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。
获取外部数据
python 支持从多种类型的数据导入。在开始使用 python 进行数据导入前需要先导入 pandas 库,为了方便起见,我们也同时导入 numpy 库。
1 import numpy as np
2 import pandas as pd
导入数据表
下面分别是从 excel 和 csv 格式文件导入数据并创建数据表的方法。代码是最简模式,里面有很多可选参数设置,例如列名称,索引列,数据格式等等。感兴趣的朋友可以参考 pandas 的
官方文档。

1 df=pd.DataFrame(pd.read_csv(‘name.csv’,header=1))

2 df=pd.DataFrame(pd.read_excel(‘name.xlsx’))

创建数据表
另一种方法是通过直接写入数据来生成数据表,excel 中直接在单元格中输入数据就可以,python 中通过下面的代码来实现。生成数据表的函数是 pandas 库中的 DateFrame 函数,数据表一共有 6 行数据,每行有 6 个字段。在数据中我们特意设置了一些 NA 值和有问题的字段,例如包含空格等。后面将在数据清洗步骤进行处理。后面我们将统一以 DataFrame 的简称 df 来命名数据表。
1 df = pd.DataFrame({‘id’:[1001,1002,1003,1004,1005,1006],
2 ‘date’:pd.date_range(‘20130102’, periods=6),
3 ‘city’:['Beijing ', ‘SH’, ’ guangzhou ', ‘Shenzhen’, ‘shanghai’, 'BEIJING '],
4 ‘age’:[23,44,54,32,34,32],
5 ‘category’:[‘100-A’,‘100-B’,‘110-A’,‘110-C’,‘210-A’,‘130-F’],
6 ‘price’:[1200,np.nan,2133,5433,np.nan,4432]},

7 columns =[‘id’,‘date’,‘city’,‘category’,‘age’,‘price’])

这是刚刚创建的数据表,我们没有设置索引列,price 字段中包含有 NA 值,city 字段中还包含了一些脏数据。

数据表检查
python 中处理的数据量通常会比较大,所以就需要我们对数据表进行检查。比如我们之前的文章中介绍的纽约出租车数据和 Citibike 的骑行数据,数据量都在千万级,我们无法一目了然的了解数据表的整体情况,必须要通过一些方法来获得数据表的关键信息。数据表检查的另一个目的是了解数据的概况,例如整个数据表的大小,所占空间,数据格式,是否有空值和重复项和具体的数据内容。为后面的清洗和预处理做好准备。
数据维度(行列)

Excel 中可以通过 CTRL 向下的光标键,和 CTRL 向右的光标键来查看行号和列号。Python 中使用 shape 函数来查看数据表的维度,也就是行数和列数,函数返回的结果(6,6)表示数据表有 6 行,6 列。下面是具体的代码。

1 #查看数据表的维度

2 df.shape

3 (6, 6)

数据表信息

使用 info 函数查看数据表的整体信息,这里返回的信息比较多,包括数据维度,列名称,数据格式和所占空间等信息。

1 #数据表信息

2 df.info()

4 <class ‘pandas.core.frame.DataFrame’>

5 RangeIndex: 6 entries, 0 to 5

6 Data columns (total 6 columns):

7 id 6 non-null int64

8 date 6 non-null datetime64[ns]

9 city 6 non-null object

10 category 6 non-null object

11 age 6 non-null int64

12 price 4 non-null float64

13 dtypes: datetime64ns, float64(1), int64(2), object(2)

14 memory usage: 368.0 bytes

查看数据格式

Excel 中通过选中单元格并查看开始菜单中的数值类型来判断数据的格式。Python 中使用 dtypes 函数来返回数据格式。

Dtypes 是一个查看数据格式的函数,可以一次性查看数据表中所有数据的格式,也可以指定一列来单独查看。
1#查看数据表各列格式
2df.dtypes
3

4id int64

5date datetime64[ns]

6city object

7category object

8age int64

9price float64

10dtype: object

11

12#查看单列格式

13df[‘B’].dtype

14

15dtype(‘int64’)

查看空值

Excel 中查看空值的方法是使用“定位条件”功能对数据表中的空值进行定位。“定位条件”在“开始”目录下的“查找和选择”目录中。

Isnull 是 Python 中检验空值的函数,返回的结果是逻辑值,包含空值返回 True,不包含则返回 False。可以对整个数据表进行检查,也可以单独对某一列进行空值检查。

df_isnull

1#检查特定列空值

2df[‘price’].isnull()

3

40 False

51 True
62 False
73 False

84 True

95 False

10Name: price, dtype: bool

查看唯一值

Excel 中查看唯一值的方法是使用“条件格式”对唯一值进行颜色标记。Python 中使用 unique 函数查看唯一值。

Unique 是查看唯一值的函数,只能对数据表中的特定列进行检查。下面是代码,返回的结果是该列中的唯一值。类似与 Excel 中删除重复项后的结果。

1 #查看 city 列中的唯一值

2 df[‘city’].unique()34array(['Beijing ', ‘SH’, ’ guangzhou ', ‘Shenzhen’, ‘shanghai’, 'BEIJING '], dtype=object)

查看数据表数值

Python 中的 Values 函数用来查看数据表中的数值。以数组的形式返回,不包含表头信息。

1#查看数据表的值

2df.values

3
4array([[1001, Timestamp(‘2013-01-02 00:00:00’), 'Beijing ', ‘100-A’, 23,
5 1200.0],

6 [1002, Timestamp(‘2013-01-03 00:00:00’), ‘SH’, ‘100-B’, 44, nan],

7 [1003, Timestamp(‘2013-01-04 00:00:00’), ’ guangzhou ', ‘110-A’, 54,

8 2133.0],

9 [1004, Timestamp(‘2013-01-05 00:00:00’), ‘Shenzhen’, ‘110-C’, 32,

10 5433.0],

11 [1005, Timestamp(‘2013-01-06 00:00:00’), ‘shanghai’, ‘210-A’, 34,
12 nan],

13 [1006, Timestamp(‘2013-01-07 00:00:00’), 'BEIJING ', ‘130-F’, 32,

14 4432.0]], dtype=object)

查看列名称

Colums 函数用来单独查看数据表中的列名称。

1 #查看列名称

2 df.columns

3

4 Index([‘id’, ‘date’, ‘city’, ‘category’, ‘age’, ‘price’], dtype=‘object’)

查看前 10 行数据

Head 函数用来查看数据表中的前 N 行数据,默认 head()显示前 10 行数据,可以自己设置参数值来确定查看的行数。下面的代码中设置查看前 3 行的数据。

1#查看前 3 行数据``df.head(``3``)

Tail 行数与 head 函数相反,用来查看数据表中后 N 行的数据,默认 tail()显示后 10 行数据,可以自己设置参数值来确定查看的行数。下面的代码中设置查看后 3 行的数据。

1#查看最后 3 行df.tail(3)

Ⅶ python中如何用筛选过的数据进行图表统计

  1. 用JS插件做前端描点 python 提供数据,这个就选择真实样式,输出就可以,好的插件就有flot,charts等等

  2. 用python图形库,这个要结合numpy来展示,具体的案列,我给你个网址你看看,写的很详细

    http://python.jobbole.com/84218/

Ⅷ python数据分析需要哪些库

1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中Z出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的Z佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。

Ⅸ 如何在python读数据库数据并已图表形式呈现

首先你要知道如何在视图里渲染模板,另外得要看你用的是什么数据库,以及你是否使用django的orm。
拿mysql为例,如果你只需要从现有数据库中查询数据并显示,那么使用MySQLdb模块即可,查询出来的数据和模板进行渲染,之后返回渲染后的模板对象即可。

阅读全文

与python数字图表相关的资料

热点内容
oa服务器异常怎么办 浏览:68
cmd编译utf8 浏览:276
怎么截取app接受的数据 浏览:276
nrf24l01pdf 浏览:298
php字符串转array 浏览:434
U盘分了文件夹后 浏览:940
javasetstring 浏览:837
压缩包里文件夹是白色的 浏览:472
编译链接知乎 浏览:591
php查询按钮 浏览:715
有音响游戏解压神器 浏览:253
怎么压缩图片jpeg 浏览:713
澳大利亚net程序员 浏览:579
程序员加班难受 浏览:990
如何看服务器品牌 浏览:256
ecy50clp压缩机多少W 浏览:755
mac终端命令怎么保存 浏览:850
微信公众号图片压缩 浏览:440
可以在安卓平板上画画的软件是什么 浏览:438
高盛数字加密 浏览:897