① 美式期权的平价公式
C+Ke^(-rT)=P+S0 平价公式是根据无套利原则推导出来的。 构造两个投资组合。 1、看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。 2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。 看到期时这...
应该是Ke^(-rT),K乘以e的-rT次方。也就是K的现值。e的-rT次方是连续复利的折现系数。 平价公式是根据无套利原则推导出来的。 构造两个投资组合。 看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。 看跌期权...
期权的价格与价值期权的价格就是期权费。以下是决定期权价格的六大变量:现货价格(Spotprice); 合同价格(Strikeprice); 合同期(Expirationdate); 波幅(Volatility); 本国利率(Interestrate); (股票)分红率(Dividendyield)(如果是外汇期权,...
1、看涨期权推导公式: C=S*N(d1)-Ke^(-rT)*N(d2) 其中 d1=(ln(S/K)+(r+0.5*б^2)*T/бT^(1/2) d2=d1-бT^(1/2) S-------标的当前价格 K-------期权的执行价格 r -------无风险利率 T-------行权价格距离现在到期日(期权剩余的天数/365) N(d)---...
你所说的参数delta gamma是BS期权定价模型里面的吧。 BS模型本身是针对欧式期权的。对于美式期权要根据具体情况计算 1对于无收益资产的期权而言 同时可以适用于美式看涨期权,因为在无收益情况下,美式看涨期权提前执行是不可取的,它的期权执行...
假设两个投资组合 A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期总收益=X B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S 投资组合A的价格为:看涨期权价格(C)+无风险债券价格(PV(X))。PV...
首先,平价期权只是指执行价格=实时股票价格,并没有说delta=0.5,其次你要的公式是((Cu-Cd)/(S*(u-d)))*e^-delta*h, delta是分红率
平价期权 At the Money:是指执行价格与个人外汇买卖实时价格相同的期权。 价外期权 Out of the Money:是指期权的行使价格高于股票的当前价格. 价内期权 In the Money:指执行价格与基础工具的现行远期市场价格相比较为有利的期权。期权越是处...
1.欧式看涨期权理论价格C=SN(d1)-N(d2)Ke^[-r(T-t)],欧式看跌期权理论价格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看涨期权理论价格公式减去看跌期权理论价格公式化简后可得Call-Put平价公式为P+S=C+Ke^[-r(T-t)] 2.根据平价公式依题意可知,K=45,C=...
用的是Black-Scholes公式 就是下面这个公式:(我只拿了看涨的举例,想看看跌的去这个链接,维基网络:http://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#Black-Scholes_formula) 其中: T是到期时间(单位年) K是执行价格 e是欧拉数...
② 美式期权和欧式期权的计算公式分别是什么
期权履约方式包括欧式、美式两种。欧式期权的买方在到期日前不可行使权利,只能在到期日行权。美式期权的买方可以在到期日或之前任一交易日提出执行。很容易发现,美式期权的买方“权利”相对较大。美式期权的卖方风险相应也较大。因此,同样条件下,美式期权的价格也相对较高。
模拟交易中的棉花期权为欧式履约型态,强麦期权为美式履约型态。参与者可以自由体会两种履约方式的交易特点。
合约到期日对美式期权,合约到期日是期权可以履约的最后的一天;对欧式期权,合约到期日是期权可以履约的唯一的一天。对股票期权,这是合约到期月的第三个星期五之后的那个星期六;不过,经纪公司有可能要求期权的买方在一个更早的限期前递进想要履约的通知书。如果星期五是节日,最后交易日就是这个星期五之前的星期四。
美式期权和欧式期权的比较:
根据财务金融理论,在考虑某些特殊因素(如现金股利)之后,美式选择权可能优于欧式选择权。
例如,甲公司突然宣布发放较预期金额高的现金股利时,持有该公司股票美式选择权的人可以立即要求履约,将选择权转换为股票,领取该笔现金股利;而持有该公司欧式选择权的人就只能干瞪眼,无法提前履约换股、领取现金股利了。不过,除了这个特殊的因素外,综合其它条件,我们发觉美式选择权和欧式选择权并无优劣之分。
在直觉上,我们会认为既然投资选择权取得的是权利,那么这个权利愈有弹性,就应该愈有价值。美式选择权较欧式更具弹性,似乎就符合这样的一个直觉想法,许多人认为美式选择权应该比欧式的更值钱。但事实上,在我们把选择权的价值如何计算说明后,您就会知道,除了现金股利等因素外,美式选择权和欧式选择权的价值应该相等。
若要再细分的话,事实上在美式及欧式选择权之间,还有第三类的选择权,那就是大西洋式选择权(AtlanticOptions),或百慕达式选择权(BermudianOptions)。从字面上,您可以很轻易地看出来,这种选择权的履约条款介于美式和欧式之间(大西洋和百慕达地理位置都在美欧大陆之间)。例如,某个选择权契约,到期日在一年后,但在每一季的最后一个星期可以提前履约(可在到期日期履约,但可履约日期仍有其它限制),这就是最典型的百慕达式选择权。
③ 为什么对于美式期权来说,到期期限越长,价值越大对于欧式期权来说,较长时间不一定能增加期权价值
对于欧式期权来说,期权持有者只能在到期日当天行权,故距离到期剩余时间长并不意味着到期日当天标的资产的价格对多头有利,因此,对于欧式期权来说,到期剩余时间对期权价格的影响具有不确定性。
在无股利情况下确实是时间越长时间价值越高。
当股利存在时欧式看涨期权价值不一定随着到期时间增加而增加,因为可能增加到期时间后会把股利包含在期限内,因此导致期权时间价值下降。
而美式看涨期权没有这样的担忧,因为可以提前执行。
美式期权是可以提前行权执行的,而欧式期权只能到期行权。这两种不同的方法表示实际上美式的权力更大一点,所以美式的期权价值比欧式的期权价值高。
对于无收益资产的期权而言,同时可以适用于美式 看涨期权,因为在无收益情况下,美式看涨期权提前执行是不可取的,期权执行日也就是到期日,所以bs适用美式看涨期权。对于美式看跌,由于可以提前执行。
拓展资料:
(1)美式期权合同在到期日前的任何时候或在到期日都可以执行合同,结算日则是在履约日之后的一天或两天,大多数的美式期权合同允许持有者在交易日到履约日之间随时履约,但也有一些合同规定一段比较短的时间可以履约,如“到期日前两周”。
(2)欧式期权合同要求其持有者只能在到期日履行合同,结算日是履约后的一天或两天。国内的外汇期权交易都是采用的欧式期权合同方式。
期权合约的剩余时限越长,美式看涨期权和看跌期权以及欧式看涨期权的价值越大,而对欧式看跌期权影响不大因为美式期权的在期权到期日之前都可以行权,而欧式期权只能在到期日行权。所以美式期权的剩余时间越长,期权的时间价值越大。
④ 什么叫欧式期权定价,什么叫美式期权定价,什么叫二叉树期权估值,这三者的联系与区别是什么
期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
中文名
期权定价模型
简称
OPM
创始人
布莱克与舒尔斯
创立时间
20世纪70年代
⑤ 谁有最小二乘蒙特卡洛方法的美式期权定价python程序代码
function [c,p]=ucoption(S,X,sigma,r,T,M) sig2=sigma^2; srT=sqrt(T); srTa=sigma*srT; c=0; p=0; for i=1:M ST=S*exp((r-0.5*sig2)*T+srTa*randn); c=c+max(ST-X,0); p=p+max(X-ST,0); end c=c/M; p=p/M; [Call,Put] = blsprice(S, X, r, T, ...
⑥ 期权的定价方法
这是一个老题目了,在知乎里也有一些类似的问题,但总感觉所有回答都有所欠缺,所以希望在这里对所有的数值方法进行一个梳理。按照我个人的分类,期权定价的数值方法分为五个大类:解析解方法,树方法,偏微分方程数值解方法,蒙特卡洛方法,傅立叶变换方法。
1)解析解方法:
一个期权定价问题,其实就是根据已知的随机微分方程(SDE)模型,然后来求解关于这个随机过程函数表达式的过程。这也是为什么随机微积分和Ito lemma会是金融工程的核心知识之一,因为Ito直接告诉了我们一个随机过程的函数所满足的新SDE:
m{d}f(t, X_{t})=frac{partial f}{partial t}
m{d}t + frac{partial f}{partial X_t}
m{d}X_t + frac{1}{2}frac{partial^2 f}{partial X_t^2}
m{d}[X, X]_t
然后,如果我们可以求出这个SDE的解析解,那么一个欧式无路径依赖期权的价格就是它在终值时刻折现的期望值。这就是一种期权定价的解析解方法,当然你也可以利用PDE来求解,由于Feynman Kac定理的存在,PDE和条件期望的答案会是一致的。
而这类方法的优点是显而易见的,一旦解析解存在,那么期权的价格公式计算速度就会非常之快,不论做拟合还是优化都会有效率上质的提升,而这类方法的缺点也很明显,那就是,对于大部分模型和大部分奇异期权,解析解未必存在。
2)树方法
之所以叫树方法而不叫二叉树,是因为我们也将讨论三叉树模型,但其实本质思想是一模一样的。
如果告知你了一个标的资产的波动率,那么你可以通过下述式子构造一个N段的二叉树的上下波动:
u =
m{e}^{sigmasqrt{T/N}}, d =
m{e}^{-sigmasqrt{T/N}}
然后利用逆推,来得到初始时刻的期权价格。
那么三叉树呢?首先要明白一个道理,除了满足了下列条件的三叉树模型(u是上叉,d是下叉,l是中叉)
其余的三叉树都是incomplete market。在其余的树模型下,我们只能做到super-replicate,而不能完成perfect hedge。而这独有的一种三叉树模型,也成为了最常用的树模型之一。或许有人好奇为什么有二叉树了,还有人使用更麻烦的三叉树。这是因为三叉树的收敛速度要高于二叉树。
那么树模型的优缺点又是什么呢?树模型有一个任何连续时间模型都无法取代的优点,那就是每一个定价,在树模型里,不论美式、欧式、路径依赖、奇异,通过Backward Inction Principle得到价格,永远都是伴随着显式对冲策略的。而在连续时间模型里,想获得连续时间对冲策略的这类问题,是一个倒向随机微分方程(BSDE)问题,有很多时候并不是那么好解决的,尤其是当期权有奇异或美式属性的时候。
另一方面,树模型缺点也显而易见,高维度问题树模型是不能解决的,所以对于多个标的资产的问题,尤其是具有相关系数的资产,我们只能诉之于他法。而从速度上来讲,树模型的收敛速度是要低于PDE方法的。
3)PDE方法
很多对于quantitative finance陌生的人也会听说过Black Scholes PDE。而实际上,不同的随机模型,都会对应不同的PDE。BS PDE只不过是单资产符合几何布朗运动随机模型的PDE表达罢了。因为对于期权,我们往往知晓它最终到期日的payoff,所以我们用payoff函数来作为这个PDE的终值条件。
如果PDE存在解析解,最优办法自然也是求解析解。然而,如果解析解不存在,我们就必须诉诸数值方法。最常用的数值解方法就是有限差分,也就是将所有变量构造一个网格,然后利用网格上的差分方法来估计偏导数,进而将PDE问题转化为代数问题。而对于期权定价的PDE,我们会根据期权的性质,获得这个PDE终值条件和边值条件。然而,有时候根据不同的模型,我们可能得到的并不是一个简单的PDE,而可能是PIDE(partial integral differential equation),也就是在PDE中多了积分项,这时候,我们需要同时再借助数值积分来完成数值计算。
PDE的数值问题自然还有很多的选择,有限元、谱方法都在列。但期权定价PDE本身并不像很多物理PDE有很大的非线性程度,边界也并没有那么奇怪,所以基本上有限差分是可以解决绝大部分问题的。
有限差分法分三种:显式差分,隐式差分,交错差分。我们不深入研究算法,但几个点就是:稳定性上,显式差分是条件稳定的,另外两种都是无条件稳定;计算复杂度上,显示最简单,隐式次之,交错最繁琐;精确性上,显式、隐式是同阶的,交错差分的特殊情形,显式和隐式各占一半时,也就是Crank-Nicolson差分,精度会在时间上也上升一阶。
另外,在期权定价中PDE有两大类,正向和倒向。传统的BS PDE就是倒向的一个典型例子,它的终值条件就是期权的payoff function。而一个倒向PDE所对应的正向PDE,它不再是期权价格满足的PDE,而是这个标的的“价格密度”所满足的PDE。这个“价格密度”被称为State price,或者Arrow Debreu price,抑或是Green function。而这个在我之前的一篇文章有介绍过
Arrow Debreu price与快速拟合
而PDE方法的缺点主要有两点:路径依赖问题,高维度问题。很多路径依赖问题的PDE形式是很麻烦,甚至无法表达的,比如亚氏期权,比如回望期权。而对于高维度问题,如果PDE的数值方法会从平面网格上升到空间网格,在复杂度上不但繁琐,而且在边值条件上更难以控制。而PDE的优点则是速度快,而且根据差分的数值方法,在计算Greeks的时候不需要加以再次的bumping计算。举个例子,如果不降维,一个具有两个assets的期权的有限差分就是这样的一个立方网格:

4)蒙特卡洛方法
蒙特卡洛方法是目前应用范围最广泛的方法了。因为不存在提前行权属性的期权价格其实就是一个期望,所以我们就可以通过模拟很多的路径,来用平均数估计真实期望。而美式或百慕大这种具有提前行权属性的期权,它的期权价格其实是一个随机优化问题。这类问题我们可以采用regression-based Monte Carlo,也就是最小二乘蒙特卡洛,利用regression来估计conditional NPV,然后再用蒙特卡洛求解当前价值。
所以说,蒙特卡洛方法是最为general的方法了。然而,蒙特卡洛的缺点也是显而易见:因为要模拟上百万条路径,而且对于奇异期权还要做路径上的计算,美式更要做回归,蒙特卡洛方法成为了计算时间长的代名词。但幸运的是,我们有三种提速的方法:1,利用方差缩减,在保证方差恒定的基础上,可以减少模拟路径;2,利用Multi-level 蒙特卡洛,减少complexity;3,利用GPU或超级计算机,进行并行计算。
对于普通蒙特卡洛方法,上述三种方法都是可行的,而且GPU的提速是非常显着的。对于方差缩减,得强调一点的就是,一般而言,最简单的方式是对偶变量,其次是控制变量,然后是利用条件期望,最难的是importance sampling,而在效果和适用范围上,它们的排序往往是刚好相反的。比如美式期权的最小二乘蒙特卡洛,方差缩减的最有效手法就是important sampling,其他方法的效果很小。
这里另外再着重强调一下最小二乘蒙特卡洛。最小二乘蒙特卡洛的流程大致如下:首先,正向模拟标的路径;其次,倒向在每个时间节点,对所有路径值进行回归,估算条件期望,直到初始时间点;最后,求平均。所以值得注意的一点就是,在这里,如果单纯使用GPU cluster进行提速,效果并不是很理想,因为路径模拟并不是最消耗时间的步骤,对所有路径回归才是。虽然如此,但其实还是可以用GPU cluster来对回归精度加以提升,比如可以将路径进行归类,然后将global regressor转换成多个local regressor。
总的来说,蒙特卡洛方法是期权定价中适用范围最广的数值方法,但也是最慢的方法。然而,我们可以利用方差缩减、复杂度缩减,以及GPU计算来优化我们的蒙特卡洛算法,达到提速与增加精确性的目的。
5)傅立叶方法
傅立叶方法也被称为特征函数法,利用的就是对于很多的模型,它们的特征函数往往是显式表达的,比如靠具有independent increment的infinitely divisible process来决定的模型,因为在这样的情况下,我们有Levy-Khintchine representation,很多拟合性质很好的过程,比如Variance Gamma,Normal Inverse Gaussian都属于这一类。而特征函数实际上可以看作是一个随机变量的傅立叶变换,这也就是这个名字的由来。
如果我们有显式表达的特征函数,我们可以通过傅立叶逆变换来得到原随机变量的密度,进而达到求解期权价格的目的。一般来讲,这样的方法要比PDE方法更加快速,因为数值积分的速度要比微分方程数值解的速度要快。然而,这类方法的缺陷也是显而易见的,路径依赖性和维度问题,以及我们必须要有显式表达的特征函数。
总结:
在这里,我们只讲一些面上的东西。具体深入的东西,我会在公众号:衍生财经上详谈。
⑦ 美式看跌期权定价
11=20*55% 及 11=20*0.55 这个是 二叉树期权定价模型 有个概念公式 你可以网络搜下
⑧ 美式期权没有明确的表达式,美式期权定价方法有哪些
引言:商品经济的快速发展,人们已经从古时候的以物换物,变成了现在的钱权购买交易。从2015年开始,中国的期权市场到了。期权交易及赢在中国普及,期权交易是指在未来一定时期可以买卖的权利是买方向卖方支付一定数量的权利金后拥有的,在当今市场上,主要有欧式期权和美式期权,下面和小编一起来看看美式期权定价方法有哪些?
三、有限差分法
有限差分法的是将衍生品的价格进行微分化处理改变,获得样品均数,再用平方的方法对微分方法进行求值,最初使用有限差分法到期权定价中。有限差分法可以很好的应用于欧式期权和美式期权定价中去。但是该方式的效用完全取决于期权的离散参数的展开,在期权数数增大时计算量非常大,数值量无法计算。