⑴ 数控车床圆弧编程事例
以广数系统车床R10为例子,程序如下:
G0X10Z0G1X-0.5F0.12X-0.2G3X10Z-10R10
这是外R内R把G3该成G2就可以了。这是广数的,有些和他刚好相反!X轴的数据要看你的刀鼻多大,如果在刀鼻半径那里输入了半径值X轴则为0,电脑会自动计算。推荐使用这种方法,车出来R比较准。
(1)内圆弧编程实例扩展阅读:
数控车床国家代码:
数控车床准备功能G代码(JB3208-83),G代码(或G指令)是在数控机床系统插补运算之前需要预先规定,为插补运算作好准备的工艺指令,如:坐标平面选择、插补方式的指定、孔加工等固定循环功能的指定等。
G代码以地址G后跟两位数字组成,常用的有G00~G99,现代数控机床系统有的已扩展到三位数字。
G代码按功能类别分为模态代码和非模态代码。a、c、d、……j、k等9组,同一组对应的G代码称为模态代码,它表示组内某G代码(如c组中G17)一旦被指定,功能一直保持到出现同组其它任一代码(如G18或G19)时才失效,否则继续保持有效。
所以在编下一个程序段时,若需使用同样的G代码则可省略不写,这样可以简化加工程序编制。而非模态代码只在本程序段中有效。
⑵ 西门子数控车床怎么编程
西门子数控系统编程是一种精确控制数控车床运动的方式。圆弧编程是其中一项关键技术,它通过指定圆弧半径、终点或圆心来实现圆弧运动。具体来说,圆弧运动可以通过以下几种方式编程:
第一种方法是使用半径和终点进行圆弧编程。在这种编程方式中,您需要提供圆弧半径(CR=)和圆弧终点的坐标。此外,还需要用符号+/-表示运行角度是否应该大于或小于180°。例如,CR=+…表示角度小于或等于180°,CR=–…表示角度大于180°。圆弧编程的指令如下:
N10 G0X67.5 Y80.211
N20 G3X17.203 Y38.029 CR=34.913 F500
第二种方法是用圆弧角和圆心或终点进行圆弧编程。在这种编程方式中,需要提供圆弧角(AR=)和圆弧终点或圆心的坐标。例如:
N10 G0X67.5 Y80.211
N20 G3X17.203 Y38.029 AR=140.134 F500
第三种方法是用极坐标进行圆弧编程。在这种编程方式中,需要提供极角(AP=)和极半径(RP=)。例如:
N10 G0X67.5 Y80.211
N20 G111X50 Y50
N30 G3RP=34.913 AP=200.052 F500
螺旋线插补是另一种重要的编程技术,用于加工螺纹或油槽。螺旋线插补通过叠加水平圆弧运动和垂直直线运动来实现。具体来说,圆弧运动在指定的工作平面内的轴上进行,而垂直直线运动则在垂直的横向进给轴上进行。例如,当工作平面为G17时,圆弧运动将在X和Y轴上进行,而垂直直线运动则在Z轴上进行。
螺旋线插补的编程指令如下:
N10 G17 G0 X27.5 Y32.99 Z3
N20 G1 Z-5 F50
N30 G3X20 Y5 Z-20 I=AC(20) J=AC (20) TURN=2
以上示例中,从起始位置执行两个整圆,然后回到终点,从而加工出所需的螺旋线。
通过这些编程方法,可以实现精确的圆弧和螺旋线运动,从而提高数控车床的加工精度和效率。
⑶ 加工中心手工编程内洗圆弧怎么编程,举例说明,谢谢
加工中心的手动编程内圆弧过程类似于用圆规画圆,首先确定圆的半径和圆心位置。编程步骤如下:
1. 从机床的起点开始,使用G1指令移动到圆弧的起点(如G1 X0 Y0)。
2. 接下来,指定圆心到起点的距离,即圆的半径,通过G2或G3指令(G2表示顺时针圆弧,G3表示逆时针),然后给出圆心移动的方向和结束位置。例如,对于直径10的半圆,顺时针铣削的程序为G3 i-5 X-10 Y0,其中i-5表示沿X轴负方向移动5单位。
3. 数控手工编程涉及分析图样、工艺规划、数学计算和编写程序。首先,理解零件图样,确定加工步骤,选择合适的刀具和走刀路径。数学处理部分包括建立工件坐标系,计算刀具路径,对于复杂形状可能需要离散点逼近。编写程序清单时,根据指令代码和格式逐行编写。
4. 程序输入可通过键盘输入或通过计算机接口完成。在程序输入后,要进行校验和试切。通过模拟刀具运动或实际空运行检查程序是否正确,必要时调整参数。首件试切是确保精度的关键步骤。
总之,手工编程内圆弧是结合几何分析、指令应用和实际操作的过程,确保每个步骤精确无误,才能得到预期的加工效果。