❶ 如何用python生成三维数组
>>> d = {1:{2:[3,4]}} }
>>> print d[1][2][0]
3
这样就可以了
❷ 怎么用python的numpy模块和matplotlib模块把下面这些文本做一个3d的数据建模
你好,你现在那个图是一个连续的波形图,因为你提供的是具体的数据,没有xyz之间的关系公式,所以只能是画一个散点图。假设你已经将xyz都读进来了,下面是一个画三d散点图的例子。
from mpl_toolkits.mplot3d.axes3d import Axes3D
#绘制3维的散点图
x = np.random.randint(0,10,size=100) #用你X的数据来代替
y = np.random.randint(-20,20,size=100) #用你Y的数据来代替
z = np.random.randint(0,30,size=100) #用你的Z的数据来代替
# 此处fig是二维
fig = plt.figure()
# 将二维转化为三维
axes3d = Axes3D(fig)
# axes3d.scatter3D(x,y,z)
# 效果相同
axes3d.scatter(x,y,z)
❸ Python 里面向量该怎样运算
首先要写上这一句:
from numpy import *
(写上这句的前提也得你已经安了numpy)
(1) 定义一个零向量(4维):
>>>a=zeros(4)
>>>a
array([0.,0.,0.,0.])
定义一个List:
b=[1,2,3,4]
(2)向量可直接与List相加:
>>>c=a+b
>>>c
array([1.,2.,3.,4.])
(3)要给向量里每个元素都乘以同一个数:
>>>d=b*[3]
或者:
>>>c=3
>>>d=b*[c]
>>>d
array([3.,6.,9.,12.])
而不能是d=b*3,即要乘的这个数字得是个List形式
(4)两个向量相除(对应元素相除):
>>>e=[3,2,3,4]
>>>f=d/e
>>>f
array([1.,3.,3.,3.])
❹ Python怎么创建一个1-100的向量,感觉语法是真的烦。
我感觉你是没有理解向量的定义,跟python语法没关系,向量是表示一组带有方向的数,而计算机无法表示方向,只有用数组的叠加来表示维度。而向量就是代表某个维度上的一组数,所以它就是一行数组或者一列数组,后面就好理解了。python不能像其他语言直接定义数组,只有用列表代替。或者你可以用第三方库numpy 来实现数组定义和科学计算
❺ 使用Python编写一个三维向量,实现向量的加法减法,点乘叉乘
#--coding:gb2312--
classvector3:
def__init__(self,x_=0,y_=0,z_=0):#构造函数
self.x=x_
self.y=y_
self.z=z_
def__add__(self,obj):#重载+作为加号
returnvector3(self.x+obj.x,self.y+obj.y,self.z+obj.z)
def__sub__(self,obj):#重载-作为减号
returnvector3(self.x-obj.x,self.y-obj.y,self.z-obj.z)
def__mul__(self,obj):#重载*作为点乘
returnvector3(self.x*obj.x,self.y*obj.y,self.z*obj.z)
def__pow__(self,obj):#重载**作为叉乘。不好,偏离了常理上的意义,可以考虑重载其他符号,或者直接写函数。
returnvector3(self.y*obj.z-obj.y*self.z,self.z*obj.x-self.x*obj.z,self.x*obj.y-obj.x*self.y)
def__str__(self):#供print打印的字符串
returnstr(self.x)+','+str(self.y)+','+str(self.z)
v1=vector3(1,2,3)
v2=vector3(0,1,2)
printv1+v2
printv1-v2
printv1*v2
printv1**v2
结果:
❻ 用python生成一个向量,每个元素都是同一个字符串。
使用python的列表生成式即可,列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。代码如下:<pre t="code" l="python">>>> nl = [i + 1 for i in range(1, 10)]
>>> nl
[2, 3, 4, 5, 6, 7, 8, 9, 10]
>>>
❼ Python怎么生成三维数
importnumpyasnp
a=np.array([1,2,3],dtype=int)#创建1*3维数组array([1,2,3])
type(a)#numpy.ndarray类型
a.shape#维数信息(3L,)
a.dtype.name#'int32'
a.size#元素个数:3
a.itemsize#每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int)#创建2*3维数组array([[1,2,3],[4,5,6]])
b.shape#维数信息(2L,3L)
b.size#元素个数:6
b.itemsize#每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16')#创建2*3维数组array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#维数信息(2L,3L)
c.size#元素个数:6
c.itemsize#每个元素所占用的字节数目:2
c.ndim#维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex)#复数二维数组
d.itemsize#每个元素所占用的字节数目:16
d.dtype.name#元素类型:'complex128'
importnumpyasnp
a=np.array([1,2,3],dtype=int)#创建1*3维数组array([1,2,3])
type(a)#numpy.ndarray类型
a.shape#维数信息(3L,)
a.dtype.name#'int32'
a.size#元素个数:3
a.itemsize#每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int)#创建2*3维数组array([[1,2,3],[4,5,6]])
b.shape#维数信息(2L,3L)
b.size#元素个数:6
b.itemsize#每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16')#创建2*3维数组array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#维数信息(2L,3L)
c.size#元素个数:6
c.itemsize#每个元素所占用的字节数目:2
c.ndim#维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex)#复数二维数组
d.itemsize#每个元素所占用的字节数目:16
d.dtype.name#元素类型:'complex128'
a1=np.zeros((3,4))#创建3*4全零二维数组
输出:
array([[0.,0.,0.,0.],
[0.,0.,0.,0.],
[0.,0.,0.,0.]])
a1.dtype.name#元素类型:'float64'
a1.size#元素个数:12
a1.itemsize#每个元素所占用的字节个数:8
a2=np.ones((2,3,4),dtype=np.int16)#创建2*3*4全1三维数组
a2=np.ones((2,3,4),dtype='int16')#创建2*3*4全1三维数组
输出:
array([[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]],
[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]]],dtype=int16)
a3=np.empty((2,3))#创建2*3的未初始化二维数组
输出:(mayvary)
array([[1.,2.,3.],
[4.,5.,6.]])
a4=np.arange(10,30,5)#初始值10,结束值:30(不包含),步长:5
输出:array([10,15,20,25])
a5=np.arange(0,2,0.3)#初始值0,结束值:2(不包含),步长:0.2
输出:array([0.,0.3,0.6,0.9,1.2,1.5,1.8])
fromnumpyimportpi
np.linspace(0,2,9)#初始值0,结束值:2(包含),元素个数:9
输出:
array([0.,0.25,0.5,0.75,1.,1.25,1.5,1.75,2.])
x=np.linspace(0,2*pi,9)
输出:
array([0.,0.78539816,1.57079633,2.35619449,3.14159265,
3.92699082,4.71238898,5.49778714,6.28318531])
a=np.arange(6)
输出:
array([0,1,2,3,4,5])
b=np.arange(12).reshape(4,3)
输出:
array([[0,1,2],
[3,4,5],
[6,7,8],
[9,10,11]])
c=np.arange(24).reshape(2,3,4)
输出:
array([[[0,1,2,3],
[4,5,6,7],
[8,9,10,11]],
[[12,13,14,15],
[16,17,18,19],
[20,21,22,23]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a=np.arange(4)
输出:
array([0,1,2,3])
b=a**2
输出:
array([0,1,4,9])
c=10*np.sin(a)
输出:
array([0.,8.41470985,9.09297427,1.41120008])
n<35
输出:
array([True,True,True,True],dtype=bool)
A=np.array([[1,1],[0,1]])
B=np.array([[2,0],[3,4]])
C=A*B#元素点乘
输出:
array([[2,0],
[0,4]])
D=A.dot(B)#矩阵乘法
输出:
array([[5,4],
[3,4]])
E=np.dot(A,B)#矩阵乘法
输出:
array([[5,4],
[3,4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the
resulting array corresponds to the more general or precise one (a
behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
数组索引、切片和迭代
a=np.ones((2,3),dtype=int)#int32
b=np.random.random((2,3))#float64
b+=a#正确
a+=b#错误
a=np.ones(3,dtype=np.int32)
b=np.linspace(0,pi,3)
c=a+b
d=np.exp(c*1j)
输出:
array([0.54030231+0.84147098j,-0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a=np.random.random((2,3))
a.sum()
a.min()
a.max()
b=np.arange(12).reshape(3,4)
输出:
array([[0,1,2,3],
[4,5,6,7],
[8,9,10,11]])
b.sum(axis=0)#按列求和
输出:
array([12,15,18,21])
b.sum(axis=1)#按行求和
输出:
array([6,22,38])
b.cumsum(axis=0)#按列进行元素累加
输出:
array([[0,1,2,3],
[4,6,8,10],
[12,15,18,21]])
b.cumsum(axis=1)#按行进行元素累加
输出:
array([[0,1,3,6],
[4,9,15,22],
[8,17,27,38]])
universal functions
B=np.arange(3)
np.exp(B)
np.sqrt(B)
C=np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函数包括:
all,any,apply_along_axis,argmax,argmin,argsort,average,bincount,ceil,clip,conj,corrcoef,cov,cross,cumprod,cumsum,diff,dot,floor,inner,lexsort,max,maximum,mean,median,min,minimum,nonzero,outer,prod,re,round,sort,std,sum,trace,transpose,var,vdot,vectorize,where
a=np.arange(10)**3
a[2]
a[2:5]
a[::-1]#逆序输出
foriina:
print(i**(1/3.))
deff(x,y):
return10*x+y
b=np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c=np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
输出:
array([[[0,1,2],
[10,11,12]],
[[100,101,102],
[110,111,112]]])
c.shape
输出:
(2L,2L,3L)
c[0,...]
c[0,:,:]
输出:
array([[0,1,2],
[10,11,12]])
c[:,:,2]
c[...,2]
输出:
array([[2,12],
[102,112]])
forrowinc:
print(row)
forelementinc.flat:
print(element)
a=np.floor(10*np.random.random((3,4)))
输出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
a.ravel()
输出:
array([3.,9.,8.,...,6.,0.,2.])
a.reshape(6,2)
输出:
array([[3.,9.],
[8.,4.],
[2.,1.],
[4.,6.],
[0.,6.],
[0.,2.]])
a.T
输出:
array([[3.,2.,0.],
[9.,1.,6.],
[8.,4.,0.],
[4.,6.,2.]])
a.T.shape
输出:
(4L,3L)
a.resize((2,6))
输出:
array([[3.,9.,8.,4.,2.,1.],
[4.,6.,0.,6.,0.,2.]])
a.shape
输出:
(2L,6L)
a.reshape(3,-1)
输出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
详查以下函数:
ndarray.shape,reshape,resize,ravel
a=np.floor(10*np.random.random((2,2)))
输出:
array([[5.,2.],
[6.,2.]])
b=np.floor(10*np.random.random((2,2)))
输出:
array([[0.,2.],
[4.,1.]])
np.vstack((a,b))
输出:
array([[5.,2.],
[6.,2.],
[0.,2.],
[4.,1.]])
np.hstack((a,b))
输出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])
fromnumpyimportnewaxis
np.column_stack((a,b))
输出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])
a=np.array([4.,2.])
b=np.array([2.,8.])
a[:,newaxis]
输出:
array([[4.],
[2.]])
b[:,newaxis]
输出:
array([[2.],
[8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[4.,2.],
[2.,8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[4.],
[2.],
[2.],
[8.]])
np.r_[1:4,0,4]
输出:
array([1,2,3,0,4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
输出:
array([[1,2,3,0,0,0,4,5,6]])
详细使用请查询以下函数:
hstack,vstack,column_stack,concatenate,c_,r_
a=np.floor(10*np.random.random((2,12)))
输出:
array([[9.,7.,9.,...,3.,2.,4.],
[5.,3.,3.,...,9.,7.,7.]])
np.hsplit(a,3)
输出:
[array([[9.,7.,9.,6.],
[5.,3.,3.,1.]]),array([[7.,2.,1.,6.],
[7.,5.,0.,2.]]),array([[9.,3.,2.,4.],
[3.,9.,7.,7.]])]
np.hsplit(a,(3,4))
输出:
[array([[9.,7.,9.],
[5.,3.,3.]]),array([[6.],
[1.]]),array([[7.,2.,1.,...,3.,2.,4.],
[7.,5.,0.,...,9.,7.,7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
a=np.arange(12)
输出:
array([0,1,2,...,9,10,11])
notatall
b=a
bisa#True
b.shape=3,4
a.shape#(3L,4L)
deff(x)#,sofunctioncallsmakeno.
print(id(x))#id是python对象的唯一标识符
id(a)#111833936L
id(b)#111833936L
f(a)#111833936L
浅复制
c=a.view()
cisa#False
c.baseisa#True
c.flags.owndata#False
c.shape=2,6
a.shape#(3L,4L)
c[0,4]=1234
print(a)
输出:
array([[0,1,2,3],
[1234,5,6,7],
[8,9,10,11]])
s=a[:,1:3]
s[:]=10
print(a)
输出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])
深复制
d=a.()
disa#False
d.baseisa#False
d[0,0]=9999
print(a)
输出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])
numpy基本函数和方法一览
Array Creation
arange,array,,empty,empty_like,eye,fromfile,fromfunction,identity,linspace,logspace,mgrid,ogrid,ones,ones_like,r,zeros,zeros_like
Conversions
ndarray.astype,atleast_1d,atleast_2d,atleast_3d,mat
Manipulations
array_split,column_stack,concatenate,diagonal,dsplit,dstack,hsplit,hstack,ndarray.item,newaxis,ravel,repeat,reshape,resize,squeeze,swapaxes,take,transpose,vsplit,vstack
Questionsall,any,nonzero,where
Ordering
argmax,argmin,argsort,max,min,ptp,searchsorted,sort
Operations
choose,compress,cumprod,cumsum,inner,ndarray.fill,imag,prod,put,putmask,real,sum
Basic Statistics
cov,mean,std,var
Basic Linear Algebra
cross,dot,outer,linalg.svd,vdot
完整的函数和方法一览表链接:
https://docs.scipy.org/doc/numpy-dev/reference/routines.html#routines
❽ python计算每两个向量之间的距离并保持到矩阵中
在很多算法中都会涉及到求向量欧式距离,例如机器学习中的KNN算法,就需要对由训练集A和测试集B中的向量组成的所有有序对(Ai,Bi),求出Ai和Bi的欧式距离。这样的话就会带来一个二重的嵌套循环,在向量集很大时效率不高。
这里介绍如何将这一过程用矩阵运算实现。
假设有两个三维向量集,用矩阵表示:
A=[a11a12a21a22a31a32]
B=⎡⎣⎢⎢b11b12b13b21b22b23b31b32b33⎤⎦⎥⎥
要求A,B两个集合中的元素两两间欧氏距离。
先求出ABT:
ABT=⎡⎣⎢⎢⎢⎢⎢∑k=13ak1bk1∑k=13ak2bk1∑k=13ak1bk2∑k=13ak2bk2∑k=13ak1bk3∑k=13ak2bk3⎤⎦⎥⎥⎥⎥⎥
然后对A和BT分别求其中每个向量的模平方,并扩展为2*3矩阵:
Asq=⎡⎣⎢⎢⎢⎢⎢∑k=13(ak1)2∑k=13(ak2)2∑k=13(ak1)2∑k=13(ak2)2∑k=13(ak1)2∑k=13(ak2)2⎤⎦⎥⎥⎥⎥⎥
Bsq=⎡⎣⎢⎢⎢⎢⎢∑k=13(bk1)2∑k=13(bk1)2∑k=13(bk2)2∑k=13(bk2)2∑k=13(bk3)2∑k=13(bk3)2⎤⎦⎥⎥⎥⎥⎥
然后:
Asq+Bsq−2ABT=⎡⎣⎢⎢⎢⎢⎢∑k=13(ak1−bk1)2∑k=13(ak2−bk1)2∑k=13(ak1−bk2)2∑k=13(ak2−bk2)2∑k=13(ak1−bk3)2∑k=13(ak2−bk3)2⎤⎦⎥⎥⎥⎥⎥
将上面这个矩阵一开平方,就得到了A,B向量集两两间的欧式距离了。
下面是Python实现:
import numpy
def EuclideanDistances(A, B):
BT = B.transpose()
vecProd = A * BT
SqA = A.getA()**2
sumSqA = numpy.matrix(numpy.sum(SqA, axis=1))
sumSqAEx = numpy.tile(sumSqA.transpose(), (1, vecProd.shape[1]))
SqB = B.getA()**2
sumSqB = numpy.sum(SqB, axis=1)
sumSqBEx = numpy.tile(sumSqB, (vecProd.shape[0], 1))
SqED = sumSqBEx + sumSqAEx - 2*vecProd
ED = (SqED.getA())**0.5
return numpy.matrix(ED)
❾ python里怎么定义三维数组
在Windows下运行应用程序时出现非法操作的提示
此类故障引起原因较多,在如下几钟可能:
(1) 系统文件被更改或损坏,倘若由此引发则打开一些系统自带的程序时就会出现非法操作,(例如,打开控制面板)
(2) 驱动程序未正确安装,此类故障一般表现在显卡驱动程序之止,倘若由此引发,则打开一些游戏程序时就会产生非法操作,有时打开一此网页也会出现这种程况。
(3) 内存质量不好,降低内存速度也可能会解决这个问题。
(4) 软件不兼容,如,IE 5。5在Windows 98 SE 上,当打开多个网页也会产生非法操作。