導航:首頁 > 源碼編譯 > 基本蟻群演算法的改進

基本蟻群演算法的改進

發布時間:2022-06-12 01:41:33

① 蟻群演算法的概念,最好能舉例說明一些蟻群演算法適用於哪些問題!

概念:蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值

其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序

應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內

引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點: 1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。 引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。 既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了! 蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。 其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。

具體參考http://ke..com/view/539346.htm
希望對你有幫助,謝謝。

② 蟻群演算法,退火演算法這些東西究竟屬於什麼,這些東西要從哪裡才能系統學習

第1章緒論
1.1螞蟻的基本習性
1.1.1螞蟻的信息系統
1.1.2蟻群社會的遺傳與進化
1.2蟻群覓食行為與覓食策略
1.2.1螞蟻的覓食行為
1.2.2螞蟻的覓食策略
1.3人工蟻群演算法的基本思想
1.3.1人工蟻與真實螞蟻的異同
1.3.2人工蟻群演算法的實現過程
1.4蟻群優化演算法的意義及應用
1.4.1蟻群優化演算法的意義
l.4.2蟻群演算法的應用
1.5蟻群演算法的展望
第2章螞蟻系統——蟻群演算法的原型
2.1螞蟻系統模型的建立
2.2蟻量系統和蟻密系統的模型
2.3蟻周系統模型
第3章改進的蟻群優化演算法
3.1帶精英策略的螞蟻系統
3.2基於優化排序的螞蟻系統
3.3蟻群系統
3.3.1蟻群系統狀態轉移規則
3.3.2蟻群系統全局更新規則
3.3.3蟻群系統局部更新規則
3.3.4候選集合策略
3.4最大一最小螞蟻系統
3.4.1信息素軌跡更新
3.4.2信息素軌跡的限制
3.4.3信息素軌跡的初始化
3.4.4信息素軌跡的平滑化
3.5最優一最差螞蟻系統
3.5.1最優一最差螞蟻系統的基本思想
3.5.2最優一最差螞蟻系統的工作過程
第4章蟻群優化演算法的模擬研究
4.1螞蟻系統三類模型的模擬研究
4.1.1三類模型性能的比較
4.2.2基於統計的參數優化
4.2基於蟻群系統模型的模擬研究
4.2.1局部優化演算法的有效性
4.2.2蟻群系統與其他啟發演算法的比較
4.3最大一最小螞蟻系統的模擬研究
4.3.1信息素軌跡初始化研究
4.3.2信息素軌跡量下限的作用
4.3.3蟻群演算法的對比
4.4最優一最差螞蟻系統的模擬研究
4.4.1參數ε的設置
4.4.2幾種改進的蟻群演算法比較
第5章蟻群演算法與遺傳、模擬退火演算法的對比
5.1遺傳演算法
5.1.1遺傳演算法與自然選擇
5.1.2遺傳演算法的基本步驟
5.1.3旅行商問題的遺傳演算法實現
5.2模擬退火演算法
5.2.1物理退火過程和Metroplis准則
5.2.2模擬退火法的基本原理
5.3蟻群演算法與遺傳演算法、模擬退火演算法的比較
5.3.1三種演算法的優化質量比較
5.3.2三種演算法收斂速度比較
5.3.3三種演算法的特點與比較分析
第6章蟻群演算法與遺傳、免疫演算法的融合
6.1遺傳演算法與螞蟻演算法融合的GAAA演算法
6.1.1遺傳演算法與螞蟻演算法融合的基本思想
……
第7章自適應蟻群演算法
第8章並行蟻群演算法
第9章蟻群演算法的收斂性與蟻群行為模型
第10章蟻群演算法在優化問題中的應用
附錄
參考文獻

③ 基於改進蟻群演算法的車輛路徑問題研究

車輛路徑問題(Vehicle Routing Problem,簡稱VRP)來源於交通運輸,由Dantzig[1]於1959年提出,它是組合優化問題中一個典型的NP-hard問題,用於研究亞特蘭大煉油廠向各加油站投送汽油的運輸路徑優化問題,並迅速成為運籌學和組合優化領域的前沿和研究熱點,吸引眾多學者對其進行研究。通常用圖G=(V,E)用來描述該問題[2],在圖G=(V,E)中,V={0,1,2,…,n},E={(i,j),i≠j,i,j∈V},節點1表示倉庫(depot),其它節點為客戶。每個客戶的需求為qi,邊(i,j)對應的距離或運輸時間或成本為Cij,所有車輛運輸能力為Q,車輛從倉庫出發,完成運輸任務後回到倉庫,每個顧客只能接受一次服務,問題的目標函數通常是車輛數和運輸成本最小化。由於該問題的復雜性,尋找到一種高效、精確的演算法的可能性微乎其微,人們開始嘗試利用仿生智能演算法求解。 蟻群演算法是一種新的群體智能啟發式優化方法,適合求解車輛路徑等組合優化問題。最初由義大利學者Dorigo[3][4]等人提出用於解決旅行商問題,隨著研究的不斷深入,已經陸續滲透到電子、通訊、車間調度等工程領域。John E. Bell[5]將螞蟻系統優化的亞啟發式方法應用到VRP問題的求解。Silvia[6]探討了在車輛容量限制條件下的VRP問題,在亞啟發式演算法基礎上提出了CVRP 的蟻群演算法,並取得較好的效果。劉志勛[7]等在分析VRP和TSP區別基礎上,構造了求解VRP的自適應蟻群演算法,提出了近似解可行化的解決策略。蟻群演算法由於基本蟻群演算法收斂速度慢且易陷於局部最優,很難在較短時間內對大規模VRP求得滿意最優解,且該演算法極易出現停滯現象,因此有必要對 演算法進行改進。

④ 蟻群演算法及其應用的內容簡介

蟻群演算法是義大利學者Dorigo等人於1991年創立的,是繼神經網路、遺傳演算法、免疫演算法之後的又一種新興的啟發式搜索演算法。螞蟻群體是一種社會性昆蟲,它們有組織、有分工,還有通訊系統,它們相互協作,能完成從蟻穴到食物源尋找最短路徑的復雜任務。模擬螞蟻群體智能的人工蟻群演算法具有分布計算、信息正反饋和啟發式搜索的特點,不僅在求解組合優化問題中獲得廣泛應用,而且也用於連續時間系統的優化。
本書是國內首部蟻群演算法的專著,系統地闡述蟻群演算法的基本原理、基本蟻群演算法及改進演算法,蟻群演算法與遺傳、免疫演算法的融合,自適應蟻群演算法,並行蟻群演算法,蟻群演算法的收斂性與理論模型及其在優化問題中的應用。

⑤ 蟻群優化演算法的使用-編碼的問題!

「蟻群演算法」學習包下載

下載地址: http://board.verycd.com/t196436.html (請使用 eMule 下載)

近一百多篇文章,打包壓縮後有 24.99MB ,基本上是從維普資料庫中下載來的,僅供學習和研究之用,請務用於商業活動或其他非法活動中,各文章版權歸原作者所有。

如果您覺得本人這樣做侵犯了您的版權,請在本帖後回復,本人會馬上刪除相應的文章。

以下是文件列表,全是 PDF 格式的:

基於蟻群優化演算法遞歸神經網路的短期負荷預測
蟻群演算法的小改進
基於蟻群演算法的無人機任務規劃
多態蟻群演算法
MCM基板互連測試的單探針路徑優化研究
改進的增強型蟻群演算法
基於雲模型理論的蟻群演算法改進研究
基於禁忌搜索與蟻群最優結合演算法的配電網規劃
自適應蟻群演算法在序列比對中的應用
基於蟻群演算法的QoS多播路由優化演算法
多目標優化問題的蟻群演算法研究
多線程蟻群演算法及其在最短路問題上的應用研究
改進的蟻群演算法在2D HP模型中的應用
製造系統通用作業計劃與蟻群演算法優化
基於混合行為蟻群演算法的研究
火力優化分配問題的小生境遺傳螞蟻演算法
基於蟻群演算法的對等網模擬器的設計與實現
基於粗粒度模型的蟻群優化並行演算法
動態躍遷轉移蟻群演算法
基於人工免疫演算法和蟻群演算法求解旅行商問題
基於信息素非同步更新的蟻群演算法
用於連續函數優化的蟻群演算法
求解復雜多階段決策問題的動態窗口蟻群優化演算法
蟻群演算法在鑄造生產配料優化中的應用
多階段輸電網路最優規劃的並行蟻群演算法
求解旅行商問題的混合粒子群優化演算法
微粒群優化演算法研究現狀及其進展
隨機攝動蟻群演算法的收斂性及其數值特性分析
廣義蟻群與粒子群結合演算法在電力系統經濟負荷分配中的應用
改進的蟻群演算法及其在TSP中的應用研究
蟻群演算法的全局收斂性研究及改進
房地產開發項目投資組合優化的改進蟻群演算法
一種改進的蟻群演算法用於灰色約束非線性規劃問題求解
一種自適應蟻群演算法及其模擬研究
一種動態自適應蟻群演算法
螞蟻群落優化演算法在蛋白質折疊二維親-疏水格點模型中的應用
用改進蟻群演算法求解函數優化問題
連續優化問題的蟻群演算法研究進展
蟻群演算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蟻群演算法在K—TSP問題中的應用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基於遺傳蟻群演算法的機器人全局路徑規劃研究
改進的蟻群演算法在礦山物流配送路徑優化中的研究
基於蟻群演算法的配電網路綜合優化方法
基於蟻群演算法的分類規則挖掘演算法
蟻群演算法在連續性空間優化問題中的應用
蟻群演算法在礦井通風系統優化設計中的應用
基於蟻群演算法的液壓土錨鑽機動力頭優化設計
改進蟻群演算法設計拉式膜片彈簧
計算機科學技術
基本蟻群演算法及其改進
TSP改進演算法及在PCB數控加工刀具軌跡中的應用
可靠性優化的蟻群演算法
對一類帶聚類特徵TSP問題的蟻群演算法求解
蟻群演算法理論及應用研究的進展
基於二進制編碼的蟻群優化演算法及其收斂性分析
蟻群演算法的理論及其應用
基於蟻群行為模擬的影像紋理分類
啟發式蟻群演算法及其在高填石路堤穩定性分析中的應用
蟻群演算法的研究現狀
一種快速全局優化的改進蟻群演算法及模擬
聚類問題的蟻群演算法
蟻群最優化——模型、演算法及應用綜述
基於信息熵的改進蟻群演算法及其應用
機載公共設備綜合管理系統任務分配演算法研究
基於改進蟻群演算法的飛機低空突防航路規劃
利用信息量留存的蟻群遺傳演算法
An Improved Heuristic Ant-Clustering Algorithm
改進型蟻群演算法在內燃機徑向滑動軸承優化設計中的應用
基於蟻群演算法的PID參數優化
基於蟻群演算法的復雜系統多故障狀態的決策
蟻群演算法在數據挖掘中的應用研究
基於蟻群演算法的基因聯接學習遺傳演算法
基於細粒度模型的並行蟻群優化演算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
運載火箭控制系統漏電故障診斷研究
混沌擾動啟發式蟻群演算法及其在邊坡非圓弧臨界滑動面搜索中的應用
蟻群演算法原理的模擬研究
Hopfield neural network based on ant system
蟻群演算法及其實現方法研究
分層實體製造激光頭切割路徑的建模與優化
配送網路規劃蟻群演算法
基於蟻群演算法的城域交通控制實時滾動優化
基於蟻群演算法的復合形法及其在邊坡穩定分析中的應用
Ant Colony Algorithm for Solving QoS Routing Problem
多產品間歇過程調度問題的建模與優化
基於蟻群演算法的兩地之間的最佳路徑選擇
蟻群演算法求解問題時易產生的誤區及對策
用雙向收斂蟻群演算法解作業車間調度問題
物流配送路徑安排問題的混合蟻群演算法
求解TSP問題的模式學習並行蟻群演算法
基於蟻群演算法的三維空間機器人路徑規劃
蟻群優化演算法及其應用
蟻群演算法不確定性分析
一種求解TSP問題的相遇蟻群演算法
基於蟻群優化演算法的彩色圖像顏色聚類的研究
鈑金件數控激光切割割嘴路徑的優化
基於蟻群演算法的圖像分割方法
一種基於蟻群演算法的聚類組合方法
圓排列問題的蟻群模擬退火演算法
智能混合優化策略及其在流水作業調度中的應用
蟻群演算法在QoS網路路由中的應用
一種改進的自適應路由演算法
基於蟻群演算法的煤炭運輸優化方法
基於蟻群智能和支持向量機的人臉性別分類方法
蟻群演算法在啤酒發酵控制優化中的應用
一種基於時延信息的多QoS快速自適應路由演算法
蟻群演算法中參數α、β、ρ設置的研究——以TSP問題為例
基於人工蟻群優化的矢量量化碼書設計演算法
具有自適應雜交特徵的蟻群演算法
蟻群演算法在原料礦粉混勻優化中的應用
基於多Agent的蟻群演算法在車間動態調度中的應用研究
用蟻群優化演算法求解中國旅行商問題
蟻群演算法在嬰兒營養米粉配方中的應用
蟻群演算法在機械優化設計中的應用
蟻群優化演算法的研究現狀及研究展望
蟻群優化演算法及其應用研究進展
蟻群演算法的理論與應用
簡單蟻群演算法的模擬分析
一種改進的蟻群演算法求解最短路徑問題
基於模式求解旅行商問題的蟻群演算法
一種求解TSP的混合型蟻群演算法
基於MATLAB的改進型基本蟻群演算法
動態蟻群演算法求解TSP問題
用蟻群演算法求解類TSP問題的研究
蟻群演算法求解連續空間優化問題的一種方法
用混合型螞蟻群演算法求解TSP問題
求解復雜TSP問題的隨機擾動蟻群演算法
基於蟻群演算法的中國旅行商問題滿意解
蟻群演算法的研究現狀和應用及螞蟻智能體的硬體實現
蟻群演算法概述
蟻群演算法的研究現狀及其展望
基於蟻群演算法的配電網網架優化規劃方法
用於一般函數優化的蟻群演算法
協同模型與遺傳演算法的集成
基於蟻群最優的輸電網路擴展規劃
自適應蟻群演算法
凸整數規劃問題的混合蟻群演算法
一種新的進化演算法—蛟群演算法
基於協同工作方式的一種蟻群布線系統

⑥ 想要對蟻群演算法中的信息素更新規則進行改進,可是不知道如何著手,求大神給個思路吧

先查一查有沒有相關的包.如果是要用aproprio演算法,建議把演算法看懂,自己試一試.應該不難.

⑦ 求我的摘要翻譯,謝謝大家~~

Unmanned aerial vehicle (uav) is very important in modern space technology at the forefront of science and technology. Therefore, unmanned aerial vehicle (uav) route planning has become an important research topic in the field of research. Complete path between the load-point optimization is an important task of unmanned aerial vehicle (uav) route planning system.
This article first analyzes the unmanned aerial vehicle (uav) flight path planning technology research status at home and abroad, and explains the main problems of the subject, mainly studied the preferred path of path planning problem. For unmanned aerial vehicle (uav) route search, proposed a algorithm based on ant colony foraging behavior, using the basic ant colony algorithm, combined with the practical application in locked state, designed the improved algorithm, to solve concave obstacle encountered in the actual terrain into a trap. At the same time, in view of the ?

⑧ 蟻群演算法及其應用的目錄

第1章緒論
1.1螞蟻的基本習性
1.1.1螞蟻的信息系統
1.1.2蟻群社會的遺傳與進化
1.2蟻群覓食行為與覓食策略
1.2.1螞蟻的覓食行為
1.2.2螞蟻的覓食策略
1.3人工蟻群演算法的基本思想
1.3.1人工蟻與真實螞蟻的異同
1.3.2人工蟻群演算法的實現過程
1.4蟻群優化演算法的意義及應用
1.4.1蟻群優化演算法的意義
l.4.2蟻群演算法的應用
1.5蟻群演算法的展望
第2章螞蟻系統——蟻群演算法的原型
2.1螞蟻系統模型的建立
2.2蟻量系統和蟻密系統的模型
2.3蟻周系統模型
第3章改進的蟻群優化演算法
3.1帶精英策略的螞蟻系統
3.2基於優化排序的螞蟻系統
3.3蟻群系統
3.3.1蟻群系統狀態轉移規則
3.3.2蟻群系統全局更新規則
3.3.3蟻群系統局部更新規則
3.3.4候選集合策略
3.4最大一最小螞蟻系統
3.4.1信息素軌跡更新
3.4.2信息素軌跡的限制
3.4.3信息素軌跡的初始化
3.4.4信息素軌跡的平滑化
3.5最優一最差螞蟻系統
3.5.1最優一最差螞蟻系統的基本思想
3.5.2最優一最差螞蟻系統的工作過程
第4章蟻群優化演算法的模擬研究
4.1螞蟻系統三類模型的模擬研究
4.1.1三類模型性能的比較
4.2.2基於統計的參數優化
4.2基於蟻群系統模型的模擬研究
4.2.1局部優化演算法的有效性
4.2.2蟻群系統與其他啟發演算法的比較
4.3最大一最小螞蟻系統的模擬研究
4.3.1信息素軌跡初始化研究
4.3.2信息素軌跡量下限的作用
4.3.3蟻群演算法的對比
4.4最優一最差螞蟻系統的模擬研究
4.4.1參數ε的設置
4.4.2幾種改進的蟻群演算法比較
第5章蟻群演算法與遺傳、模擬退火演算法的對比
5.1遺傳演算法
5.1.1遺傳演算法與自然選擇
5.1.2遺傳演算法的基本步驟
5.1.3旅行商問題的遺傳演算法實現
5.2模擬退火演算法
5.2.1物理退火過程和Metroplis准則
5.2.2模擬退火法的基本原理
5.3蟻群演算法與遺傳演算法、模擬退火演算法的比較
5.3.1三種演算法的優化質量比較
5.3.2三種演算法收斂速度比較
5.3.3三種演算法的特點與比較分析
第6章蟻群演算法與遺傳、免疫演算法的融合
6.1遺傳演算法與螞蟻演算法融合的GAAA演算法
6.1.1遺傳演算法與螞蟻演算法融合的基本思想
……
第7章自適應蟻群演算法
第8章並行蟻群演算法
第9章蟻群演算法的收斂性與蟻群行為模型
第10章蟻群演算法在優化問題中的應用
附錄
參考文獻

⑨ 螞蟻滅火的論文應用了哪些科學方法科學原理

摘要 3.3改進演算法描述改進演算法的具體步驟如下:步驟1參數初始化。令迭代次數為nc,且初始nc=0,最大nc=NC;設定螞蟻個數為m,將m個螞蟻置於初始頂點上;令道路拓撲圖上每條邊(if)的初始化信息量t(1)=C,且初始時刻Ar(0)=0。步驟2將各螞蟻的出發點置於當前解中。步驟3對每個螞蟻k(i=1,2,…)按改進後的狀態轉移規則p(1)移至下一頂點,將頂點/置於當前解中。步驟4若所有螞蟻的當前解集包含了終點,轉到步驟5,否則轉步驟3。

閱讀全文

與基本蟻群演算法的改進相關的資料

熱點內容
捷豹小型空氣壓縮機 瀏覽:553
綠盾文檔加密系統哪裡有賣 瀏覽:635
我的世界怎麼開掛在伺服器裡面 瀏覽:787
西門子自鎖正反轉編程圖 瀏覽:747
出國英語pdf 瀏覽:918
演算法線性匹配 瀏覽:672
山東省dns伺服器雲主機 瀏覽:552
安卓5g軟體怎麼隱藏 瀏覽:837
編譯內核空間不足開不了機 瀏覽:885
漢紀pdf 瀏覽:471
在哪裡下載國家醫保app 瀏覽:654
沒有與文件擴展關聯的編譯工具 瀏覽:426
我的世界反編譯mcp下載 瀏覽:19
安卓手柄下載什麼軟體 瀏覽:67
pushrelabel演算法 瀏覽:848
硬碟資料部分文件夾空白 瀏覽:615
cssloader的編譯方式 瀏覽:938
java面板大小 瀏覽:502
怎麼用命令方塊打出字體 瀏覽:499
台灣加密貨幣研究小組 瀏覽:296