導航:首頁 > 源碼編譯 > 分支定界法演算法

分支定界法演算法

發布時間:2025-08-31 07:18:36

Ⅰ 特徵選擇 分支定界法

分支定界 (branch and bound) 演算法是一種在問題的解空間樹上搜索問題的解的方法.但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹。

分枝界限法也能夠使用在混合整數規劃問題上,其為一種系統化的解法,以一般線性規劃之單形法解得最佳解後。

將非整數值之決策變數分割成為最接近的兩個整數,分列條件,加入原問題中,形成兩個子問題(或分枝)分別求解,如此便可求得目標函數值的上限(上界)或下限(下界),從其中尋得最佳解。

分支定界法演算法分析:

1、演算法優點:可以求得最優解、平均速度快。

因為從最小下界分支,每次算完限界後,把搜索樹上當前所有的葉子結點的限界進行比較,找出限界最小的結點,此結點即為下次分支的結點。這種決策的優點是檢查子問題較少,能較快的求得最佳解。

2、缺點:要存儲很多葉子結點的限界和對應的耗費矩陣。花費很多內存空間。

存在的問題:分支定界法可應用於大量組合優化問題。其關鍵技術在於各結點權值如何估計,可以說一個分支定界求解方法的效率基本上由值界方法決定,若界估計不好,在極端情況下將與窮舉搜索沒多大區別。

Ⅱ 分支定界法的演算法步驟

(1)求整數規劃的鬆弛問題最優解。
(2)若鬆弛問題的最優解滿足整數要求,得到整數規劃的最優解,否則轉下一步。
(3)任意選一個非整數解的變數 ,在鬆弛問題中加上約束 及 +1組成兩個新的鬆弛問題,稱為分支。新的鬆弛問題具有如下特徵:當原問題是求最大值時,目標值是分支問題的上界;當原問題足求最小值時,目標值是分支問題的下界。
(4)檢查所有分支的解及目標函數值,若某分支的解是整數並且目標函數值大於(max)等於其他分支的目標值,則將其他分支剪去不再計算,若還存在非整數解並且目標值大於( max)整數解的目標值,需要繼續分支,再檢查,直到得到最優解。

閱讀全文

與分支定界法演算法相關的資料

熱點內容
阿里用的什麼資料庫伺服器 瀏覽:337
玩劍網用哪個攻略app 瀏覽:76
javamysql資料庫操作 瀏覽:225
眉山參加少兒編程培訓 瀏覽:986
androidaes加密java 瀏覽:816
蜜字的app叫什麼 瀏覽:544
程序員配樂 瀏覽:453
做一個解壓屋 瀏覽:619
品牌衣服用什麼app 瀏覽:151
python3鏈接資料庫 瀏覽:55
教課書英語是什麼app 瀏覽:884
環液式壓縮機 瀏覽:479
android控制項事件 瀏覽:967
雲伺服器的鏡像選擇什麼 瀏覽:755
python如何設置cplex 瀏覽:10
linux的mv命令詳解 瀏覽:359
怎麼把安裝好的python放在桌面上 瀏覽:121
mysql退出當前命令 瀏覽:743
現在還有什麼手機好用的app 瀏覽:326
java字元處理函數 瀏覽:278