導航:首頁 > 源碼編譯 > 動態規劃演算法背包java

動態規劃演算法背包java

發布時間:2022-06-13 09:19:18

『壹』 用動態規劃演算法和貪婪演算法求解01背包問題的區別

首先這兩個演算法是用來分別解決不同類型的背包問題的,不存在哪個更優的問題。 當一件背包物品可以分割的時候,使用貪心演算法,按物品的單位體積的價值排序,從大到小取即可。 當一件背包物品不可分割的時候,(因為不可分割,所以就算按物品的單位體積的價值大的先取也不一定是最優解)此時使用貪心是不對的,應使用動態規劃。

『貳』 java動態規劃01背包編程實現,出錯怎麼辦

數組下標越界.
java技術類文章可以關注微信公賬號:碼農工作室

『叄』 求動態規劃0-1背包演算法解釋

01背包問題
題目
有N件物品和一個容量為V的背包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。

基本思路
這是最基礎的背包問題,特點是:每種物品僅有一件,可以選擇放或不放。

用子問題定義狀態:即f[i][v]表示前i件物品恰放入一個容量為v的背包可以獲得的最大價值。則其狀態轉移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

這個方程非常重要,基本上所有跟背包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:「將前i件物品放入容量為v的背包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物 品放入容量為v的背包中」,價值為f[i-1][v];如果放第i件物品,那麼問題就轉化為「前i-1件物品放入剩下的容量為v-c[i]的背包中」,此時能獲得的最大價值就是f[i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。

優化空間復雜度
以上方法的時間和空間復雜度均為O(VN),其中時間復雜度應該已經不能再優化了,但空間復雜度卻可以優化到O。

先考慮上面講的基本思路如何實現,肯定是有一個主循環i=1..N,每次算出來二維數組f[i][0..V]的所有值。那麼,如果只用一個數組 f[0..V],能不能保證第i次循環結束後f[v]中表示的就是我們定義的狀態f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主循環中推f[v]時)能夠得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事實上,這要求在每次主循環中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]保存的是狀態 f[i-1][v-c[i]]的值。偽代碼如下:

for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當於我們的轉移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因為現在的f[v-c[i]]就相當於原來的f[i-1][v-c[i]]。如果將v的循環順序從上面的逆序改成順序的話,那麼則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個重要的背包問題P02最簡捷的解決方案,故學習只用一維數組解01背包問題是十分必要的。

事實上,使用一維數組解01背包的程序在後面會被多次用到,所以這里抽象出一個處理一件01背包中的物品過程,以後的代碼中直接調用不加說明。

過程ZeroOnePack,表示處理一件01背包中的物品,兩個參數cost、weight分別表明這件物品的費用和價值。

procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意這個過程里的處理與前面給出的偽代碼有所不同。前面的示常式序寫成v=V..0是為了在程序中體現每個狀態都按照方程求解了,避免不必要的思維復雜度。而這里既然已經抽象成看作黑箱的過程了,就可以加入優化。費用為cost的物品不會影響狀態f[0..cost-1],這是顯然的。

有了這個過程以後,01背包問題的偽代碼就可以這樣寫:

for i=1..N
ZeroOnePack(c[i],w[i]);
初始化的細節問題
我們看到的求最優解的背包問題題目中,事實上有兩種不太相同的問法。有的題目要求「恰好裝滿背包」時的最優解,有的題目則並沒有要求必須把背包裝滿。一種區別這兩種問法的實現方法是在初始化的時候有所不同。

如果是第一種問法,要求恰好裝滿背包,那麼在初始化時除了f[0]為0其它f[1..V]均設為-∞,這樣就可以保證最終得到的f[N]是一種恰好裝滿背包的最優解。

如果並沒有要求必須把背包裝滿,而是只希望價格盡量大,初始化時應該將f[0..V]全部設為0。

為什麼呢?可以這樣理解:初始化的f數組事實上就是在沒有任何物品可以放入背包時的合法狀態。如果要求背包恰好裝滿,那麼此時只有容量為0的背包可能被價值為0的nothing「恰好裝滿」,其它容量的背包均沒有合法的解,屬於未定義的狀態,它們的值就都應該是-∞了。如果背包並非必須被裝滿,那麼 任何容量的背包都有一個合法解「什麼都不裝」,這個解的價值為0,所以初始時狀態的值也就全部為0了。

這個小技巧完全可以推廣到其它類型的背包問題,後面也就不再對進行狀態轉移之前的初始化進行講解。

一個常數優化
前面的偽代碼中有 for v=V..1,可以將這個循環的下限進行改進。

由於只需要最後f[v]的值,倒推前一個物品,其實只要知道f[v-w[n]]即可。以此類推,對以第j個背包,其實只需要知道到f[v-sum{w[j..n]}]即可,即代碼中的

for i=1..N
for v=V..0
可以改成

for i=1..n
bound=max{V-sum{w[i..n]},c[i]}
for v=V..bound
這對於V比較大時是有用的。

小結
01背包問題是最基本的背包問題,它包含了背包問題中設計狀態、方程的最基本思想,另外,別的類型的背包問題往往也可以轉換成01背包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態轉移方程的意義,以及最後怎樣優化的空間復雜度。

『肆』 用動態規劃演算法怎樣求解01背包問題

動態規劃主要解決的是多階段的決策問題。

01背包中,狀態為背包剩餘的容量,階段是每一個物品,決策是是否選擇當前的物品。


所以用動態規劃來解決是非常貼切的。

我們設f[V]表示已經使用容量為V時所能獲得的最大價值,w[i]表示i物品的質量,c[i]表示i物品的價值。

for(inti=1;i<=n;i++)
for(intj=V;j>=w[i];j--)
f[j]=max(f[j],f[j-w[i]]+c[i]);

這便是所謂的一個狀態轉移方程。

f[j]表示在已經使用容量為j時的最大價值,f[j-w[i]]表示在已經使用容量為j-w[i]時的最大價值。

f[j]可以由f[j-w[i]]這個狀態轉移到達,表示選取w[i]這個物品,並從而獲得價值為c[i]。

而每次f[j]會在選與不選中決策選出最優的方案。

從每一個物品,也就是每一個階段的局部最優推出最後的全局最優值。這樣就解決了01背包問題

『伍』 動態規劃演算法實現求解0/1背包問題程序,輸入應該放入背包中的物品的序號及背包中的總價值。 附:初始化

#include <stdio.h>
int list[200][200];
int x[15];
int n;
int c;
int s;
int max (int a,int b)
{
if(a>b)return a;
else return b;
}

int ks(int n,int weight[],int value[],int x[],int c)
{
int i,j;
for(i=0;i<=n;i++)
list[i][0]=0;
for(j=0;j<=c;j++)
list[0][i]=0;
for(i=0;i<=n-1;i++)
for(j=0;j<=c;j++)
if(j<weight[i])
list[i][j]=list[i-1][j];
else
list[i][j]=max(list[i-1][j],list[i-1][j-weight[i]]+value[i]);
j=c;
for(i=n-1;i>=0;i--){
if(list[i][j]>list[i-1][j]){
x[i]=1;
j=j-weight[i];
}else x[i]=0;
}

printf("背包中的物品序列號:\n");
for(i=0;i<n;i++)
printf("%d\n",x[i]);

return list[n-1][c]; }
void main(){
int weight[15]={2,2,6,5,4};
int value[15]={6,3,5,4,6};

c=10;
n=5;

s=ks(n,weight,value,x,c);

printf("背包中的總價值:\n");
printf("%d\n",s);

}

『陸』 背包動態規劃演算法怎麼輸出選擇了哪個物品,將選擇的物品一一輸出,怎麼寫代碼

抽象之後問題轉化為求一個最優化數組,x1,x2,...,xn的0-1序列

具體的步驟:

定義v[i,w]為把前i個物體中的若干個,放到容量為w的背包里產生的最大價值
wi為第i個物品的大小
vi為第i個物品的價值
1)v[0,w] = 0, 背包裡面沒有東西,背包容量為w, 價值為0
2)v[i, 0] = 0, 背包容量為0,不論i為多少,價值均為0
3)對於第i個物品有兩種選擇,放進背包或者不放
如果wi > w, 即背包容量不夠放進第i個物品 v[i,w] = v[i-1,w];
如果wi<= w, 即背包容量還可以放進第i個物品,可以選擇放或者不放,選擇的標准就是讓總價值最大
v[i,w] = max( v[i-1,w], ( v[i-1, w - wi ] + vi ) );
同時,記錄v[i,w]的x1、x2、x3...xn的值(每個是0或者1)。這里需要用一個三維數組保存了。

不知道lz看懂沒有

『柒』 關於這個java語言描述的0-1背包問題是否有錯誤

有點問題:
public static void knapsack(int[]v,int[]w,int c,int[][]m)
{
int n=v.length-1;
int jMax=Math.min(w[n]-1,c);
for(int j=0;j<=jMax;j++)
m[n][j]=0;
for(int j=w[n];j<=c;j++)
m[n][j]=v[n];
for(int i=n-1;i>1;i--)
{
jMax=Math.min(w[i]-1,c);
for(int j=0;j<=jMax;j++)
m[i][j]=m[i+1][j];
for(int j=w[i];j<=c;j++)
m[i][j]=Math.max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
}
m[1][c]=m[2][c];
if(c>=w[1])
m[1][c]=Math.max(m[1][c],m[2][c-w[1]]+v[1]);
}
public static void traceback(int[][]m,int[]w,int c,int[]x)
{
int n=w.length-1;
for(int i=1;i<n;i++) {
if(m[i][c]==m[i+1][c])x[i]=0;
else {
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c]>0)?1:0;
}

//int n=w.length-1;
for(int i=1;i<n;i++)
if(m[i][c]==m[i+1][c])x[i]=0;
else {
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c]>0)?1:0;
}

『捌』 java語言,背包問題,從Excel表中讀取數據

基本概念
問題雛形
01背包題目的雛形是:
有N件物品和一個容量為V的背包。第i件物品的體積是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。
從這個題目中可以看出,01背包的特點就是:每種物品僅有一件,可以選擇放或不放。
其狀態轉移方程是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
對於這方方程其實並不難理解,方程之中,現在需要放置的是第i件物品,這件物品的體積是c[i],價值是w[i],因此f[i-1][v]代表的就是不將這件物品放入背包,而f[i-1][v-c[i]]+w[i]則是代表將第i件放入背包之後的總價值,比較兩者的價值,得出最大的價值存入現在的背包之中。
理解了這個方程後,將方程代入實際題目的應用之中,可得
for (i = 1; i <= n; i++)
for (j = v; j >= c[i]; j--)//在這里,背包放入物品後,容量不斷的減少,直到再也放不進了
f[i][j] = max(f[i - 1][j], f[i - 1][j - c[i]] + w[i]);

問題描述
求出獲得最大價值的方案。
注意:在本題中,所有的體積值均為整數。
演算法分析
對於背包問題,通常的處理方法是搜索。
用遞歸來完成搜索,演算法設計如下:
int make(int i, int j)//處理到第i件物品,剩餘的空間為j 初始時i=m , j=背包總容量
{
if (i == 0) return 0;
if (j >= c[i])//(背包剩餘空間可以放下物品 i )
{
int r1 = make(i - 1, j - w[i]);//第i件物品放入所能得到的價值
int r2 = make(i - 1, j);//第i件物品不放所能得到的價值
return min(r1, r2);
}
return make(i - 1, j);//放不下物品 i
}
這個演算法的時間復雜度是O(n^2),我們可以做一些簡單的優化。
由於本題中的所有物品的體積均為整數,經過幾次的選擇後背包的剩餘空間可能會相等,在搜索中會重復計算這些結點,所以,如果我們把搜索過程中計算過的結點的值記錄下來,以保證不重復計算的話,速度就會提高很多。這是簡單的「以空間換時間」。
我們發現,由於這些計算過程中會出現重疊的結點,符合動態規劃中子問題重疊的性質。
同時,可以看出如果通過第N次選擇得到的是一個最優解的話,那麼第N-1次選擇的結果一定也是一個最優解。這符合動態規劃中最優子問題的性質。
解決方案
考慮用動態規劃的方法來解決,這里的:
階段:在前N件物品中,選取若干件物品放入背包中
狀態:在前N件物品中,選取若干件物品放入所剩空間為W的背包中的所能獲得的最大價值
決策:第N件物品放或者不放
由此可以寫出動態轉移方程:
我們用f[i][j]表示在前 i 件物品中選擇若干件放在已用空間為 j 的背包里所能獲得的最大價值
f[i][j] = max(f[i - 1][j - W[i]] + P[i], f[i - 1][j]);//j >= W[ i ]
這個方程非常重要,基本上所有跟背包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:「將前i件物品放入容量為v的背包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物品放入容量為v的背包中」,價值為f[v];如果放第i件物品,那麼問題就轉化為「前i-1件物品放入已用的容量為c的背包中」,此時能獲得的最大價值就是f[c]再加上通過放入第i件物品獲得的價值w。
這樣,我們可以自底向上地得出在前M件物品中取出若干件放進背包能獲得的最大價值,也就是f[m,w]
演算法設計如下:
int main()
{
cin >> n >> v;
for (int i = 1; i <= n; i++)
cin >> c[i];//價值
for (int i = 1; i <= n; i++)
cin >> w[i];//體積
for (int i = 1; i <= n; i++)
f[i][0] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= v; j++)
if (j >= w[i])//背包容量夠大
f[i][j] = max(f[i - 1][j - w[i]] + c[i], f[i - 1][j]);
else//背包容量不足
f[i][j] = f[i - 1][j];
cout << f[n][v] << endl;
return 0;
}

由於是用了一個二重循環,這個演算法的時間復雜度是O(n*w)。而用搜索的時候,當出現最壞的情況,也就是所有的結點都沒有重疊,那麼它的時間復雜度是O(2^n)。看上去前者要快很多。但是,可以發現在搜索中計算過的結點在動態規劃中也全都要計算,而且這里算得更多(有一些在最後沒有派上用場的結點我們也必須計算),在這一點上好像是矛盾的。

『玖』 背包問題的演算法

1)登上演算法
用登山演算法求解背包問題 function []=DengShan(n,G,P,W) %n是背包的個數,G是背包的總容量,P是價值向量,W是物體的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%輸入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩餘容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('裝包的方法是');disp(X);disp(X.*W2);disp('總的價值是:');disp(P*X');

時間復雜度是非指數的

2)遞歸法
先看完全背包問題
一個旅行者有一個最多能用m公斤的背包,現在有n種物品,每件的重量分別是W1,W2,...,Wn,
每件的價值分別為C1,C2,...,Cn.若的每種物品的件數足夠多.
求旅行者能獲得的最大總價值。
本問題的數學模型如下:
設 f(x)表示重量不超過x公斤的最大價值,
則 f(x)=max{f(x-i)+c[i]} 當x>=w[i] 1<=i<=n
可使用遞歸法解決問題程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
說明:當m不大時,編程很簡單,但當m較大時,容易超時.
4.2 改進的遞歸法
改進的的遞歸法的思想還是以空間換時間,這只要將遞歸函數計算過程中的各個子函數的值保存起來,開辟一個
一維數組即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)貪婪演算法
改進的背包問題:給定一個超遞增序列和一個背包的容量,然後在超遞增序列中選(只能選一次)或不選每一個數值,使得選中的數值的和正好等於背包的容量。

代碼思路:從最大的元素開始遍歷超遞增序列中的每個元素,若背包還有大於或等於當前元素值的空間,則放入,然後繼續判斷下一個元素;若背包剩餘空間小於當前元素值,則判斷下一個元素
簡單模擬如下:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{/*產生超遞增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*輸出當前的超遞增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{/*背包問題求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍歷超遞增序列中的每個元素*/
{
if(r>=array[i])/*如果當前元素還可以放入背包,即背包剩餘空間還大於當前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩餘空間小於當前元素值*/
cankao[i]=0;
}
}

void main()
{
long array[N];
int cankao[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已經選中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
貪婪演算法的另一種寫法,beibao函數是以前的代碼,用來比較兩種演算法:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}

int beibao1(long array[],int cankao[],long value,int n)
{/*貪婪演算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物體,再考慮小的物體*/
if((value1+array[i])<=value)/*如果當前物體可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩餘容量減少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}

void main()
{
long array[N];
int cankao[N]={0};
int cankao1[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}

4)動態規劃演算法

解決0/1背包問題的方法有多種,最常用的有貪婪法和動態規劃法。其中貪婪法無法得到問題的最優解,而動態規劃法都可以得到最優解,下面是用動態規劃法來解決0/1背包問題。

動態規劃演算法與分治法類似,其基本思想是將待求解問題分解成若干個子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃法求解的問題,經分解得到的子問題往往不是互相獨立的,若用分治法解這類問題,則分解得到的子問題數目太多,以至於最後解決原問題需要耗費過多的時間。動態規劃法又和貪婪演算法有些一樣,在動態規劃中,可將一個問題的解決方案視為一系列決策的結果。不同的是,在貪婪演算法中,每採用一次貪婪准則便做出一個不可撤回的決策,而在動態規劃中,還要考察每個最優決策序列中是否包含一個最優子序列。

0/1背包問題

在0 / 1背包問題中,需對容量為c 的背包進行裝載。從n 個物品中選取裝入背包的物品,每件物品i 的重量為wi ,價值為pi 。對於可行的背包裝載,背包中物品的總重量不能超過背包的容量,最佳裝載是指所裝入的物品價值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示選取物品i) 取得最大值。
在該問題中需要決定x1 .. xn的值。假設按i = 1,2,...,n 的次序來確定xi 的值。如果置x1 = 0,則問題轉變為相對於其餘物品(即物品2,3,.,n),背包容量仍為c 的背包問題。若置x1 = 1,問題就變為關於最大背包容量為c-w1 的問題。現設r?{c,c-w1 } 為剩餘的背包容量。
在第一次決策之後,剩下的問題便是考慮背包容量為r 時的決策。不管x1 是0或是1,[x2 ,.,xn ] 必須是第一次決策之後的一個最優方案,如果不是,則會有一個更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一個更好的方案。
假設n=3, w=[100,14,10], p=[20,18,15], c= 116。若設x1 = 1,則在本次決策之後,可用的背包容量為r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的條件,所得值為1 5,但因為[x2,x3 ]= [1,0] 同樣符合容量條件且所得值為1 8,因此[x2,x3 ] = [ 0,1] 並非最優策略。即x= [ 1,0,1] 可改進為x= [ 1,1,0 ]。若設x1 = 0,則對於剩下的兩種物品而言,容量限制條件為116。總之,如果子問題的結果[x2,x3 ]不是剩餘情況下的一個最優解,則[x1,x2,x3 ]也不會是總體的最優解。在此問題中,最優決策序列由最優決策子序列組成。假設f (i,y) 表示剩餘容量為y,剩餘物品為i,i + 1,...,n 時的最優解的值,即:利用最優序列由最優子序列構成的結論,可得到f 的遞歸式為:
當j>=wi時: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式
當0<=j<wi時:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始時背包問題的最優解。
以本題為例:若0≤y<1 0,則f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最優解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。
現在計算xi 值,步驟如下:若f ( 1 ,c) =f ( 2 ,c),則x1 = 0,否則x1 = 1。接下來需從剩餘容量c-w1中尋求最優解,用f (2, c-w1) 表示最優解。依此類推,可得到所有的xi (i= 1.n) 值。
在該例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接著利用返回值3 8 -p1=18 計算x2 及x3,此時r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此時r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

『拾』 用動態規演算法求出的0-1背包問題,寫出完整的可以運行的程序,並且給出演算法復雜性的分析與結果,謝謝

1.0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):
A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩餘空間為最小。
l 搜索方法
procere search(k,v:integer);
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit;
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大價值。
F[I,j] 為容量為I時取前j個背包所能獲得的最大價值。
F [i,j] = max

C.求恰好裝滿的情況數。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重復背包
A求最多可放入的重量。
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
狀態轉移方程為
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max (0<=k<= i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*實現:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal;
if now>n then exit;
if dep=l+1 then begin
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,遞歸搜索效率較高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;

思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;

begin
read(now);
i:=0;
while i<=n do begin
a[i]:=1; inc(i,now); end;
for i:=2 to v do
begin
read(now);
update;
end;
writeln(a[n]);

閱讀全文

與動態規劃演算法背包java相關的資料

熱點內容
捷豹小型空氣壓縮機 瀏覽:555
綠盾文檔加密系統哪裡有賣 瀏覽:637
我的世界怎麼開掛在伺服器裡面 瀏覽:789
西門子自鎖正反轉編程圖 瀏覽:749
出國英語pdf 瀏覽:920
演算法線性匹配 瀏覽:674
山東省dns伺服器雲主機 瀏覽:554
安卓5g軟體怎麼隱藏 瀏覽:839
編譯內核空間不足開不了機 瀏覽:887
漢紀pdf 瀏覽:474
在哪裡下載國家醫保app 瀏覽:657
沒有與文件擴展關聯的編譯工具 瀏覽:426
我的世界反編譯mcp下載 瀏覽:19
安卓手柄下載什麼軟體 瀏覽:70
pushrelabel演算法 瀏覽:850
硬碟資料部分文件夾空白 瀏覽:617
cssloader的編譯方式 瀏覽:941
java面板大小 瀏覽:506
怎麼用命令方塊打出字體 瀏覽:500
台灣加密貨幣研究小組 瀏覽:299