❶ 如何做好「推薦演算法」有哪些常見的錯誤需要避免
在這里share一下。
1、推薦演算法的構成
一套標準的推薦演算法,需要四個組成部分
第一:數據源,行為基礎數據的篩選;通常,推薦演算法來源於用戶行為的採集,簡單說就是行為數據越豐富,樣本覆蓋率越全面,結果越准確;如果采樣有偏差,那麼結果就會有偏差。
舉例1:游戲推薦演算法,我們之前限於采樣技術水平和處理能力,用的是登陸用戶玩過的游戲歷史,那麼推薦結果就會偏重於需要登陸的游戲。而隨著技術提升用全部用戶玩過的游戲歷史,就更全面了。
舉例2:在搜索引擎中,對關鍵詞做推薦,有兩種方案,一種是基於廣告主的競價記錄;另一種是基於網民的搜索行為;前一種專業性更強,噪音小;後一種覆蓋面廣,噪音大,各有利弊,根據業務訴求選擇。
推薦演算法,通常來源於用戶的行為記錄,比如關鍵詞推薦用用戶搜索歷史,電商推薦用用戶購物歷史,游戲推薦用玩家玩游戲的歷史,然後基於演算法給出相關度,再排序展示 ;但這不絕對,也有並非基於用戶行為記錄的推薦原理,比如基於用戶身份特徵或其他地區、網路環境等特徵,限於篇幅和常見的業務訴求,這里就不展開說明了。
行為基礎數據必要時要做一些去除噪音的工作,比如你通過日誌分析玩家游戲歷史,或用戶購物歷史,至少知道把各搜索引擎和工具的抓取痕跡過濾出去,否則結果是很難看的。
演算法很多種,網上可以搜到很多,就算搜不到,或者搜到了看不懂,自己編也不難的(我就編過,效果自以為還不錯,但是的確不如人家專業的演算法效果好,所以適合練手,不適合出去吹牛)
不同演算法差異還是蠻大的,需要理解一下業務訴求和目標特徵來選擇。這個我真心不是高手,我們同事講的演算法我都沒能理解,就不多說了。微博上的「張棟_機器學習"和"梁斌penny"都是演算法高手,大家可以多關心他們的微博。
第三:參數!
絕對不要認為用到了好的演算法就可以了!演算法往往會基於一些參數來調優,這些參數哪裡來?很不好意思的告訴你,大部分是拍腦袋出來的。但是你拍腦袋出來後,要知道去分析結果,去看哪裡對,哪裡錯,哪裡可以改,好的演算法可以自動調優,機器學習,不斷自動調整參數達到最優,但是通常可能需要你不斷手工去看,去看badcase,想想是什麼參數因素導致的,改一下是否變好?是否引入新的bad case?
第四:校驗!
校驗一種是人工做盲測,A演算法,B演算法的結果混淆,選案例集,看哪個效果好;或A參數、B參數混淆,同理測試。通過盲測選擇認為更合理的演算法、更適宜的參數.
以上是個人認為,做好推薦演算法的步驟
下面說一下常見問題
1、以為有了演算法就ok了,不對參數優化,不做後續的校驗和數據跟蹤,效果不好就說演算法有問題,這種基本屬於工作態度的問題了。
2、對樣本數據的篩選有問題,或缺乏必要的噪音篩查,導致結果噪音多。比如你有個推廣位天天擺著,導致用戶點擊多,然後導致後台行為數據里它和誰的關聯都高,然後不管用戶到哪裡都推薦這個玩意,這就是沒有足夠篩查。
3、熱度影響
我說一下最簡單的推薦演算法
同時選擇了A和B的人數作為A與B的關聯度。
這個實現最簡單,也最容易理解,但是很容易受熱度影響
我曾經注意過某個熱門圖書電商網站,推薦的關聯書籍一水的熱門書籍,就是這個問題。
這些是非常簡單但是又非常容易出現的,關聯誤區。
4、過於求全
現在也遇到一些朋友,一提到推薦演算法或者推薦系統,就說我這個要考慮,那個要考慮,不管是行為記錄,還是用戶特徵,以至於各種節日效應,等等等等,想通過一個推薦系統完全搞定,目標很大,所以動作就極慢,構思洋洋灑灑做了很多,實現起來無從下手,或者難以寸進;我覺得,還是量力而行,從最容易下手的地方開始,先做到比沒有強,然後根據不斷地數據校驗跟蹤,逐漸加入其他考慮因素,步步前進,而不要一上來就定一個宏偉的龐大的目標;此外要考慮實現成本和開發周期,對於大部分技術實力沒有網路,騰訊,淘寶那麼強的公司而言,先把簡單的東西搞好,已經足夠有效了,然後在運營數據的基礎上逐次推進,會越來越好;有些公司是被自己宏大的目標搞的焦頭爛額,最後說,哎,沒牛人搞不定啊。嗯,反正他們的目標,我顯著是搞不定的。就這些,希望有所幫助
❷ 演算法如何判斷面前是不是真人
難道是圖靈測試?
我倒是建議進行提問的問題盡量包含深層次邏輯
最好運用一些淺顯的雙關語,還有一些梗和古詩詞引用
❸ 快手的推薦你可能認識的人,是根據什麼來推薦的
快手好友推薦基於三種邏輯:基礎流量、疊加推薦和時間效應。
1、基本流程
快手為每一件作品提供了一個流池,無論你是大的還是好的質量。在此之後,你的分散程度取決於你的作品在池中的表現如何。因此,我們要珍惜這個流池,想辦法使我們的工作在這個流池中有出色的表現。
快手將根據四個標准來評估您在流量池中的表現:大拇指向上量、評論量、轉發量和廣播完成率。考慮到這四個標准,我們需要開始使用你所能調動的所有力量來對視頻進行點贊、評論、轉發,以及在視頻一開始就播放到最後。
2、疊加的建議
畢竟,我們自己能做的事情是有限的,所以當工作擴展到更大的規模時,就不需要我們手動干預了。因為評論數量是很重要的,所以在寫視頻標題時,你應該考慮設置一些互動問題來引導用戶留下評論。
但這里有一個警告:千萬不要去刷流量。現在我們看淘寶上面有各種刷抖音流量、評論、點贊的店鋪,千萬不要去做這種事情,一定會被關小黑屋的,一定會。所以千萬不要投機。
3、時間的影響
有些視頻在被拍攝後並沒有引起轟動,但在幾天、一周甚至一個月後,視頻突然火了起來。這個推薦演算法其實很有趣。它挖掘墳墓,點燃一些好的舊視頻
所以有些你喜歡的視頻,即使它們一開始不怎麼流行,你仍然需要繼續對它們做一些大拇指評論,並在你的時刻分享它們。這周可能不推薦,但下周可能會推薦。
(3)如何推薦演算法是真人的擴展閱讀:
快手的推薦是由地址簿中的朋友推薦的。快手在做實名制的時候,需要綁定電話號碼。同時,快手還將訪問您的手機SIM卡信息和通訊錄信息,並推薦您可能認識的人。在大數據時代,這是一件容易的事情。
例如,您將您的電話號碼與快手綁定,同時快手訪問您的地址簿並檢測您的朋友A/B/C。同時,你的朋友A/B/C也綁定了快手的電話號碼,所以很容易推斷出你是A/B/C的朋友。
也就是例如,在觀看寵物視頻時,豎起大拇指評論並停留較長時間,觀看幾次,那以後可能會為您推薦這種比較;現在有更多的美女唱歌跳舞,所以以後推薦更多的美女唱歌跳舞視頻是很有可能的。
快手演算法還在不斷的完善、調整和升級中。在未來人群肖像的分類會更加詳細,這樣人們就可以很容易的找到自己喜歡的人。
❹ 今日頭條是怎樣做到精準演算法推薦
今日頭條藉助個性化推薦提高用戶瀏覽新聞的時長,個性化推薦中最常用的演算法就是協同過濾演算法,包括基於物品的協同過濾和基於用戶的協同過濾。說成人話就是,與你同類的人喜歡什麼,就給你推什麼新聞,看了A新聞的人也瀏覽了B新聞,那麼就給你推薦B新聞。
同時,根據用戶的瀏覽軌跡和偏好,不斷更新迭代用戶的標簽(用戶畫像),提升推薦的准確率。
個性化推薦中比較難的就是冷啟動階段,無法判斷用戶的偏好,因為難以推薦能吸引用戶眼球的新聞。達觀數據採用的是多種策略來改善冷啟動用戶的推薦質量,最重要的一點就是需要秒級生成用戶畫像,快速完成冷熱轉換,確保用戶留存率。
❺ 抖音短視頻如何用演算法快速上熱門
沒有播放量?沒有曝光?沒有點贊?個人號被判是營銷號,企業號是僵屍號,那麼我們應該怎麼做呢?
一、抖音引流6大核心
1:視頻需要7秒以上。
2:盡量作品以豎屏為先,橫屏盡量少發。
3:上傳視頻時,建議選擇一個類別並添加匹配的標簽。
4:不能硬植入廣告。
5:視頻不得出現水印和圖像質量模糊等問題。
6:一定不能有不良的操作,比如說出現武器、出現一些不該出現的鏡頭和畫面。
二、抖音基本的運營思路
1.定位
定位的重要性是眾所周知的。
說白了定位是找到你擅長的分類,並繼續加深內容以吸引目標用戶的關注。
大多數人不定位是因為他們沒有自己的特色。即使今天的運氣好,蹭熱點上了熱門,明天就不知道發什麼了,很難吸引用戶。因此只有給賬號定位,才是可持續發展的道路。
2.拍攝思路與形式
設備跟上,製作精良
原創性和質量必須要高。抖音與快手、火山相比,它要求視頻的整體風格應該是酷炫和年輕化。它還需要一定程度的圖像質量和拍攝技巧。總而言之質量要求相對較高。
保證每一幀的質量,提高完成率
你必須快速進入主題並充分利用每一幀畫面。否則觀眾會隨時離開。完播率上不去,演算法會認為您的視頻質量較差,不被推薦出去。
3.真人出鏡
我們與抖音官方是有對接,我可以負責任地告訴你抖音更願意支露臉的賬號,這與抖音的社會屬性是分不開的。
所以起初我們的視頻沒有真人出境,但現在他們大大增加了真人出境的頻率。
4.顏值過關
對於手快的用戶來說他們對顏值是非常寬容的,你可以看到很多普通人表現出他們不那麼漂亮的一面。但如果你想在抖音里火起來的話,至少你不能丑或邋遢。
因此我們會找顏值比較高的來做視頻的主角進行拍攝。
5.跟上熱門挑戰
最近抖音新上線了一個比較熱門的挑戰。現在參與的人不多。如果你判斷這個話題存在火的潛力,這個時候快速跟進去做一些模仿的內容,就很可能上推薦。
抖音的內容有三個入口,第一個是推薦,第二個是關注,第三個是挑戰。
這與微博熱搜的原理相同。你可能無法自己創造熱點,但你可以趕上熱點的旅程。
三.編輯
通過編輯您可以使內容以更好的形式展現。這個屬於專業人士的業務,簡單談3點要注意的:
1.背景音樂
選音樂主要有2個標准,第一是和視頻內容完美配合,這是最好的;如果這點做不到,那就選擇用戶認知度比較高的音樂,例如像《說散就散》《海草舞》之類的,用戶還是很買單的。
2.特效
抖音提供快放,慢放,反向播放和節選段落循環放等功能。具體的玩法各不相同,所以你可以嘗試一下。
3.標題、封面
這和公眾號原則一樣,對內容的播放量、完播率、分享量和點擊都有很大的影響。
另外在視頻播放過程中,標題實際上就成了一個備注,如果設置得當也可以起到很大的作用。
比如和內容配合起來玩梗,或者引導用戶留言評論等。
四.發布、維護
1.發布時間
這個邏輯很簡單——什麼時候用戶多,就什麼時候發布。
在正常情況下互聯網產品將在中午有一個高峰期,而下班後大約19:00~23:00是另一個高峰期。您可以選擇發送這些時間段,但有許多用戶在凌晨都有在用的。
2.善用評論
我們每天都有很多用戶評論,我們需要有專門的人來維護用戶的評論,即回應用戶的問題並與用戶互動。
如果這個環節做得好,活躍度和忠誠度將會大大提高。
其實每個人都可以將其視為一個運營位置。因為抖音現在現在是沒有開放多少運營位置給賬號的,我們只能夠在頭像、簽名介紹自己的產品。
這時我們可以去評論里引導用戶,通過作者的回復,引導轉換成你的粘性用戶,比如引導到微信等。
如果企業想要在抖音的用戶中曝光的話,也是可以考慮做抖音的,畢竟它是一個有著 2 億多用戶的巨大流量池。
❻ 論淘寶搜索推薦演算法排序機制及2021年搜索的方向。
[寫在前面]淘寶搜索引擎至今反復多次,搜索順序也從最初的統計模型升級到機械學習模型,到2010年為止沒有標簽沒有基礎標簽,隨著計算能力的提高,2010年後開始挖掘用戶的基礎標簽,從3年到2013年開始使用大規模的機械學習和實時特徵
但你有沒有想過為什麼2016-2017年的兩年是各種各樣的黑搜索盛行的一年,為什麼今天幾乎消失了?
最根本的原因是從統計演算法模型到機械學習模型的轉型期。
說白了,這時不收割就沒有收割的機會。因為統計模型即將退出歷史舞台。
因此,各路大神各自擴大了統計模型演算法中的影響因素。統計演算法無論在哪裡,點擊率和坑產都很容易搜索。
那兩年成了中小賣家的狂歡盛宴,很多大神的煙火也是旺盛的。
今天推薦演算法的第三代使用後,加上疫情的影響進行了鮮明的比較,真的很感慨。
淘寶真的沒有流量了嗎?電器商務真的做不到嗎?還是大家的思維沒有改變,停留在2016-2017年的黑搜宴會上不想醒來?
2017年、2018年、2019年是淘寶推薦演算法反復最快的3年,每年的演算法升級都不同,整體上到2019年9月為止統計演算法模型的影響因素還很大,從2019年下半年開始第三代推薦演算法後,全面的真正意義進入了以機械學習模型為中心的推薦演算法時代。
各路大神也無法驗證,加上百年疫情的影響,很多大神的隱蔽布也泄露了。
基本上以統計模型為主,訓練基本上沒有聲音,典型的是坑產游戲。
如果現在還能看到的話,基本上可以判斷他不是在訓練,而是在製作印刷用紙,一定會推薦使用資源,資源是多麼安全。
刷子的生產增加真的沒有效果嗎?不是我以前的文章說:不是不行,而是從坑產的角度思考,而是從改變競爭環境的角度思考,用補充書改變競爭環境,改變場地,有新的天地,任何手段都要為商業本質服務。
正文
概述統計演算法模型時代。
統計模型時代搜索引擎的排名是最原始的排名思考,如果你的類別不錯,關鍵詞比較正確,就能得到很大的流量,當時產品需求少,只要上下架的優化就能使產品上升。
到2016年為止沒有坑產游戲嗎?黑色搜索的效果不好嗎?其實,什麼時候坑產是最核心的機密,誰來教大家,什麼時候教的最多的是類別優化,關鍵詞優化,大部分優化都圍繞關鍵詞,電器商的老人想起了你什麼時候得到關鍵詞的人得到了世界。
有人告訴我做坑產,關鍵詞找到生意也來了。什麼時候知道坑產也沒有人給你刷子,大規模的補充書也出現在黑色搜索盛行的時期。
為什麼關鍵詞者得天下?
搜索關鍵詞是用戶目前意圖最直觀的表達,也是用戶表達意圖最直接的方式。
搜索的用戶購物意圖最強,成交意願也最強,現在搜索也是轉化率最高的流量來源。
統計時代關鍵詞背後直接依賴的是類別商品,只要製作類別和關鍵詞分詞即可,哪個時代最出現的黑馬通常是類別機會、關鍵詞機會、黑科學技術機會。
最基本的是商業本質,什麼時候產品需求少,沒有很多現在的類別,自己找類別,現在想想什麼概念。
記得什麼時候類別錯了,搜索也可以來。如果你的商品點擊反饋好的話,錯誤的類別沒有什麼影響,現在試試吧
搜索類是搜索的基礎。
什麼時候能稱霸,背後有商業邏輯,用戶行為數據好就行了。
但無論如何發展檢索都離不開關鍵詞。例如,上述關鍵詞是用戶表達意圖的最直接的方法,是當前消費者的檢索行為和購買行為發生了根本性的變化。
檢索依然根據消費者的行為數據和關鍵詞來判斷需求,這就是機械學習模型時代。
機器學習模式時代-推薦搜索演算法。
現在的商品體積和消費者購物行為的豐富性,統計演算法不能滿足檢索的本質要求。
所以現在搜索引擎開始發展深度學習模式更精細的建模-推薦搜索演算法,搜索排名更智能。
在此重點討論推薦檢索演算法,
2017、2018、2019是推薦檢索演算法真正意義發展的3年,3年3個系統版本每年更換一次,很多電器商人都不知道頭腦。
推薦檢索演算法和統計演算法模型的最大區別在於,Query的處理能力和演算法有召回機制
簡單表示推薦演算法的程序:
1:對檢索關鍵詞進行分詞、重寫的處理進行類別預判
2:根據用戶信息,即用戶以前的行為數據記錄和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作等信息存檔
3:根據檢索用戶信息,根據檢索用戶以前的行為數據檢索引擎和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作為等信息存檔3:根據檢索用戶信息的檢索用戶信息
也就是說,在第一關召回階段基本上與統計模型時代的最佳化途徑相同,核心是標題分詞和類別,現在最大的區別是根據用戶信息推薦最佳化,這是標簽和正確人群標簽圖像最佳化的基本意義。
為什麼現在一直在談論標簽,談論人標簽圖像?入池實際上是為了匹配真正的消費者用戶信息,通過直通車測試來判斷人群也是為了通過性別、年齡和購買力來優化匹配真正的消費者。
召回機制:
通過構建子單元索引方式加快商品檢索,不必經歷平台上億級的所有商品。該索引是搜索引擎中的倒置索引,利用倒置索引初始篩選商品的過程是召回階段。
在這個階段,不會進行復雜的計算,主要是根據現在的搜索條件進行商品候選集的快速圈定。
之後再進行粗排和精排,計算的復雜程度越來越高,計算的商品集合逐漸減少,最後完成整個排序過程。
主要召迴路徑分為
1:語言召回
2:向量召回
這些都是商業秘密不方便的說明,有興趣的是學習我們的在線會員課程標簽重疊游戲6是基於語言和向量召回的基礎邏輯實戰落地的課程。
下一階段進入粗行列,粗行列受這些因素的影響:
粗行列作為召回後的第一個門檻,希望用戶體驗以時間低的模型快速排序和篩選商品,第一關系將過濾到不適合本次檢索詞要求的商品
為了實現這個目的,首先要明確影響粗排名得分的因素
1:類別匹配得分和文本匹配得分,
2:商品信息質量(商品發布時間、商品等級、商品等級)
3:商品組合得分
點擊得分
交易得分賣方服務商業得分
在粗排列框架下,系統粗排列演算法根據商品類別的預測得分進行得分
點擊得分交易得分
交易得分賣方服務商業得分粗排列框架下,系統粗排列的大排列
最後是精排,檢索順序的主要目標是高相關性、高個性化的正確性。
每個用戶的喜好不同,系統會根據每個用戶的Query結合用戶信息進行召回。然後通過粗排後,商品數量從萬級下降到千級。
千級商品經排後直接向用戶展示,搜索過程中商品集合的思考和具體變化如下圖
前面的召回、粗排主要解決主題相關性,通過主題相關性的限制,首先縮小商品集合和我們的在線會員課程標簽
精排階段系是真正系統推薦演算法發揮真正威力時,應根據用戶行為反饋迅速進行機械學習建模,判斷用戶真實性、准確性和可持續控制性。
為什麼現在的游戲和黑色技術暫時出現,核心是系統演算法模型機械學習模型,系統分析用戶有問題,不正確,不穩定,維持性差,可以迅速調整。
也就是說,即使發現脆弱性,研究快速有效的方法,系統也會根據你精排階段的用戶行為迅速分析學習建模,發現模型有問題,你的玩法就結束了。
猜機器學習建模的速度有多快?
想玩黑色的東西早點死去吧。
現在使用的檢索順序模型主要是
CTR模型和CVR模型,具體模型過於復雜也不需要深入,但影響這兩種模型的最基本因素是用戶行為數據
真的不能假的,假的也不能假的演算法模型越來越智能化,演算法越來越強,只有回歸商業本質才能真正解決演算法模型背後真正想解決的問題,演算法基於商業邏輯。
2021年搜索向哪個方向發生變化:
2020年電器商人和螞蟻是不平凡的一年。2020年也是螞蟻從神壇上拉下來的元年,現在螞蟻有各種各樣的黑色。
基於中小賣家的走勢無疑是阿里必須正面面對的現實。
如何讓中小賣家迴流或留在平台上,搜索該怎麼做?
檢索一定是基於三方的考慮,買方、賣方和平台本身,現在市場上又開始提倡坑產搜索邏輯,坑產妖風又開始,根據推薦搜索演算法邏輯來談這個問題。
為什麼坑產思維是不死的小強,每次危機都會跳出來。
以統計模型為中心的坑產時代是淘寶從2003年到2015年一直使用的搜索演算法模型長達13年。
同時也是淘寶和中國網分紅的野蠻生長期,統計演算法模式讓太多電商賺錢。除了
之外,十年的奴役思維已經習慣了,在電器商圈,坑產游戲一定有人相信,其他人不一定被認可。所以,我們夾著尾巴發展的原因,時間真的可以證明一切,不用多說,做自己。
習慣性思維加上特殊時期的賺錢蝴蝶效應,使許多電器商人活在歷史的長夢中。正確地說,統計演算法模型的真正廢除是在2019年下半年。
同學說坑產永遠有效,我也這么想。
永遠有效的是起爆模型坑產權重驅動和統計演算法模型中的坑產排名不同。
起爆模型的坑產要素永遠有效,這永遠不會改變。
但是,如何有效地加上這個起爆模型的坑產權重,並不像模仿購物的意圖那麼簡單。
坑產游戲在2021年絕對不行。淘寶不會把現在的演算法系統換成15年前的。
基於三方利益:
購買者體驗
賣方利益
平台的發展
搜索肯定會向高精度和高控制性發展。以標簽為中心的用戶標簽圖像仍然是影響流量精度的基本因素。
必須從標簽的角度考慮和優化種子組的圖像。
通過種子組的圖像向相似人擴展到葉類人,業界喜好人最後向相關人擴展也是擴大流量的過程渠道。
基於推薦搜索演算法邏輯:
精密排列階段演算法更強,精度更高,轉化率更高,持續穩定性更強。
基於中小賣方流通的現狀,優化精排階段並非中小賣方能夠簡單接觸。
推薦演算法從搜索排名階段出現在哪個階段?
個人判斷
一是召回階段
二是粗排階段
上述提到召回階段的演算法簡單復蓋商品為萬級,排序規則也比較簡單,中小賣方在召回階段提高精度尤為重要。
在這個萬級商品庫中,如上下架的權重上升,中小賣方有機會上升到主頁,從子單元的索引召回中尋找機會。
或者根據中小賣方的新產品和中小賣方的店鋪水平進行特別優先搜索推薦,使中小賣方的新產品在低銷售狀態下顯示,可以實現錦囊演算法。
中小賣方有機會搜索主頁,不調用用戶信息直接打開主頁的展示權可能是中小賣方最大的支持。
根據召回階段的用戶行為數據,在粗排階段以比例融入用戶信息,即標簽的影響。
在初始召回階段,類別和分詞權重,看業者主圖場景反應背後的人們反饋,用系統引導,給中小賣方真正參考的流量方向和成交方向。
誰瘋狂地印刷用紙直接關閉黑屋,理解印刷用紙優化競爭場景,從優化人群的角度出發,適當放寬處罰。
通過召回階段,得到的用戶信息會影響粗體結果。在這個階段,用戶信息的權重比例不應該太大,流量卡也不應該太死。
在各檢索順序階段用戶信息,即用戶標簽對檢索的影響權重的問題。
這個方向我的個人觀點是可能的。
❼ 推薦演算法有哪些
推薦演算法大致可以分為三類:基於內容的推薦演算法、協同過濾推薦演算法和基於知識的推薦演算法。 基於內容的推薦演算法,原理是用戶喜歡和自己關注過的Item在內容上類似的Item,比如你看了哈利波特I,基於內容的推薦演算法發現哈利波特II-VI,與你以前觀看的在內容上面(共有很多關鍵詞)有很大關聯性,就把後者推薦給你,這種方法可以避免Item的冷啟動問題(冷啟動:如果一個Item從沒有被關注過,其他推薦演算法則很少會去推薦,但是基於內容的推薦演算法可以分析Item之間的關系,實現推薦),弊端在於推薦的Item可能會重復,典型的就是新聞推薦,如果你看了一則關於MH370的新聞,很可能推薦的新聞和你瀏覽過的,內容一致;另外一個弊端則是對於一些多媒體的推薦(比如音樂、電影、圖片等)由於很難提內容特徵,則很難進行推薦,一種解決方式則是人工給這些Item打標簽。 協同過濾演算法,原理是用戶喜歡那些具有相似興趣的用戶喜歡過的商品,比如你的朋友喜歡電影哈利波特I,那麼就會推薦給你,這是最簡單的基於用戶的協同過濾演算法(user-based collaboratIve filtering),還有一種是基於Item的協同過濾演算法(item-based collaborative filtering),這兩種方法都是將用戶的所有數據讀入到內存中進行運算的,因此成為Memory-based Collaborative Filtering,另一種則是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚類,SVD,Matrix Factorization等,這種方法訓練過程比較長,但是訓練完成後,推薦過程比較快。 最後一種方法是基於知識的推薦演算法,也有人將這種方法歸為基於內容的推薦,這種方法比較典型的是構建領域本體,或者是建立一定的規則,進行推薦。 混合推薦演算法,則會融合以上方法,以加權或者串聯、並聯等方式盡心融合。 當然,推薦系統還包括很多方法,其實機器學習或者數據挖掘裡面的方法,很多都可以應用在推薦系統中,比如說LR、GBDT、RF(這三種方法在一些電商推薦裡面經常用到),社交網路裡面的圖結構等,都可以說是推薦方法。
❽ 搜索引擎的演算法是如何推薦的
搜索引擎排名規則影響因素有:
1、網站權重
2、文章與用戶搜索關鍵詞的匹配度及關鍵詞的密度
3、伺服器,網站是否穩定正常打開
網路資源平台演算法
影響網路收錄及關鍵詞排名的因素有很多,具體問題具體分析。